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Abstract—This paper presents a deep reinforcement learning
framework for stock portfolio management that integrates time-
series forecasting with advanced graph representations. We
employ a DeepAR module to provide predictive signals on
future price movements and a Temporal Portfolio Graph (TPG)
to capture inter-asset correlations. These enriched features are
fed into a Proximal Policy Optimization (PPO) agent, enabling
robust portfolio reallocation across diverse market conditions.
Experimental evaluations from 2012 to 2024 demonstrate that
our approach outperforms vanilla PPO and traditional mar-
ket benchmarks, delivering higher returns and favorable risk-
adjusted performance. The results underscore the effectiveness
of combining predictive modeling and graph-based state repre-
sentations for more informed, adaptable trading strategies.

I. INTRODUCTION

Portfolio management is a method for retail and institu-
tional investors alike to track and optimize their investments.
Conventionally, portfolio management requires a high degree
of human intervention and expertise, which favors those who
have an inherent understanding of market patterns. As a result,
investors without said expertise often fail to capture key market
movements and adapt to changing conditions.

Despite RL succeeding in various sequential decision-
making tasks, its application to financial markets remains
challenging due to their stochastic and non-stationary nature.
Additionally, RL models have traditionally failed to incorpo-
rate predictive models to guide decision-making, limiting their
effectiveness in volatile market conditions. Existing literature
that explores algorithms such as Deep Q Networks (DQN)
and Proximal Policy Optimization (PPO) has struggled with
addressing risk management and does not leverage time-series
forecasting to improve decision-making.

This paper investigates how Deep Reinforcement Learning
can be combined with predictive modeling to improve port-
folio management strategies. We propose a portfolio man-
agement framework that integrates DeepAR, a time-series
forecasting model, to guide a trading agent in making informed
decisions. Our approach utilizes a PPO-based Reinforcement
Learning agent that dynamically adjusts portfolio allocations
using historical stock price data, with a DeepAR forecasting
module and a Temporal Portfolio Graph (TPG) incorpo-

rated into its state representation to improve decision-making.
By integrating predictive modeling with deep Reinforcement
Learning, our approach aims to reduce volatility and maximize
risk-adjusted returns despite changing market conditions.

A. Motivation

There is a growing need for automated portfolio manage-
ment tools that can support investors with their decision-
making abilities, minimizing human intervention. In recent
years, Reinforcement Learning (RL) has emerged as a power-
ful tool for tackling decision-making problems. Its adaptability
and robustness make it well-suited for problems involving
temporal data. By training on historical market data, RL can
potentially outperform conventional investment strategies by
learning optimal trading strategies.

B. Related Works

Previous approaches to the application of RL for portfolio
management have explored different RL algorithms and their
varying effectiveness given the large state space and uncer-
tainty of financial markets. However, recent work has instead
placed emphasis on providing more diverse and contextual
representations of high-dimensional financial data, along with
clever mechanisms and slight modifications to vanilla RL
algorithms to aid them in their learning.

One of the earlier attempts in 2019 by Yu et al. [1]
integrated a prediction module and generative adversarial data
augmentation into a model-based RL algorithm, aiming to
mitigate data scarcity through synthesized time-series. In 2022,
Yue et al. [2] expanded on risk mitigation by coupling a
denoising autoencoder with an actor—critic RL framework,
thereby enhancing stability in noisier markets. Building on
these ideas, a 2023 study by Zou et al. [3] introduced a
cascaded LSTM architecture, feeding extracted temporal fea-
tures into a Proximal Policy Optimization (PPO) agent to
capture richer dynamics. Later that same year, Yang et al. [4]
proposed the TC-MAC (Task-Context Mutual Actor—Critic)
method, which encodes both local asset features and global
portfolio context; by maximizing mutual information between
them, it emphasized inter-asset relationships to improve policy



robustness. Most recently, Li and Hai in 2024 presented a
multi-agent deep RL system that fuses not only standard
market quotes but also additional stock indices, highlighting
the growing trend to incorporate diverse data sources [5].

C. Problem Definition

1) Reinforcement Learning: Reinforcement Learning (RL)
is formulated as a Markov Decision Process (MDP), defined
by the tuple (S, A, P, R, ), where:

o S is the state space.

o A is the action space.

e P(s'|s,a) is the transition probability function, represent-

ing the probability of transitioning to state s’ € S given
the current state s € S and action a € A.

e R(s,a) is the reward function, mapping state-action pairs

to a real-valued reward.

e 7 € [0,1] is the discount factor, determining the impor-

tance of future rewards.

The objective of the agent is to learn a policy 7 : § — A
that maximizes the expected cumulative discounted reward:

J(r)=E

Z’th(st,at) | so = S] . (1

t=0

The state-value function under policy 7 is defined as:

V™(s) =E,

Z’th(st,at) | so = s] . 2)

t=0

Similarly, the action-value function (Q-function) is:

o0
Q" (s,a) =Ex lz V' R(st,at) | s0 = 5,00 = a] N )
t=0

The optimal policy 7* maximizes these functions, leading
to the Bellman optimality equation:

Q*(S’a) =E |:R(S,(l) +’7H}f}XQ*(S/7a/) | 3,0/} . (4)

This framework serves as the foundation for various RL
algorithms, including value-based, policy-based, and actor-
critic methods.

2) Portfolio Management: Within this framework, portfolio
management is performed using the continuous reallocation of
funds among a fixed number of assets within the portfolio. The
portfolio consists of a risk-free cash balance and m stocks such
that a portfolio vector for a given time can be defined as:

wy = [wcﬂﬁwl,ta tey wm,t]7 (5)

where w; ; represents the percentage or weight of the port-
folio’s total value allocated to asset ¢ for time ¢, and we,
represents the percentage remaining as cash. This vector w;
corresponds directly to the action of the agent a;, since it is re-
determined by the agent at every timestep and can be adjusted
to values between 0 (no funds allocated to this asset) and 1 (all

funds allocated to this asset), given that w.; + Z:il wip =1
for all ¢.

By the end of a trading day, price fluctuations then cause
the weights to shift according to

;U O Wi

Wy = ———F—, (©)
Ut - Wy—1
_ _ Pt _ P1,t p2,t Pm,t
where u; = Pt—1 (1’ P1,t—1" P2,t—17 """ Pm,t—1 )’ and Pt—1,

Pt represent the closing prices of the stocks on the previous
and current day respectively. The agent must then optimally
reallocate the weights in the portfolio to the updated vector
w;, accounting for transaction fees that shrink the portfolio
by factor p,. This factor is referred to as the transaction
remainder factor and is determined recursively using the
method introduced in [6] and extended in [7].

We denote the value of the portfolio at the beginning of
trading day ¢ as v;_; and its value at the end of the trading
day as v;. The actual value of the portfolio at the end of
the trading day, after reallocating funds and accounting for
transaction fees, then becomes vy = pvy;.

We then define the logarithmic rate of return as
Ut

re =In = In(usus - we_1), @)

Vt—1
which allows the final portfolio value to be represented as a
continuous reallocation problem defined by the equation
ty41 ty41
vf = voexp(z T1) = Vo H LU - Wy_1. 8
t=1 t=1
3) Assumptions: Key assumptions are made to idealize the

trading environment and make the approach to this problem
more feasible.

1) No Slippage: We assume that even during after-hour
markets (when the agent does the reallocation), all assets
are liquid enough such that a trade can be carried out
immediately and at the last price when an order was
placed.

2) No Market Impact: The capital invested or liquidated
by the agent is insignificant compared to the total
volume of any traded asset and does not affect the
market in any way.

3) Fractional Shares: All assets in the portfolio can be
traded with fractional shares, making the portfolio vector
representation feasible. This assumption is redundant in
cryptocurrency markets but does not always hold true
with traditional stocks, hence the importance in listing
it here.

4) No After-Hours Movement: The prices of assets do not
fluctuate during after-hours, which allows the closing
prices of the previous day p,—; to be treated as the
opening prices of the current day.

II. METHODOLOGY

The architecture we propose aims to employ predictive
models and advanced data representations to enrich the state
information of the RL algorithm. We incorporate a prediction



module which leverages the DeepAR model for time-series
forecasting, providing the RL agent with an independent
evaluator and a predictive ability separate from that which
it implicitly learns. The motivation behind this is that by
offloading the learning needed for predictive decision-making,
the agent can dedicate more resources towards optimizing
asset re-allocations to maximize returns. We also introduce
a Temporal Portfolio Graph (TPG) to provide a more compre-
hensive representation of the assets in the portfolio and their
correlations. Finally, we use a popular RL algorithm known
as Proximal Policy Optimization (PPO) as the agent outputting
actions (updated portfolio weights) given a state, and a reward
to maximize cumulatively.
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Fig. 1. Simplified model architecture, showing inputs to the TPG, DeepAR
and the construction of the state used by the PPO algorithm

A. DeepAR Prediction Module

The DeepAR prediction module originates from research at
Amazon Web Services (AWS) in 2017 [8]. The incorporation
of the prediction module in this project serves a key purpose:
the stock forecasting predictions are added to the state of the

PPO RL model, adding more dimensionality and contextual
information, which is useful in generating more accurate
actions for the agent.

As its own module, the DeepAR model takes as input
normalized OHLCV data (Open, High, Low, Close, Volume)
for any number of stocks, obtained from YFinance, and then
pre-processed. It returns p and o, corresponding to predictions
with the Gaussian distribution.

The model architecture consists of probabilistic forecasting
with a recurrent neural network (RNN), specifically a multi-
layered LSTM network to learn the sequential dependencies
in the stock data. The LSTM transforms the input into hidden
representations, applying dropout between the layers. The
LSTM outputs pass through a fully-connected sub-network
consisting of: a linear layer that maintains the hidden size
dimension, a ReLU activation function for non-linearity, and
another linear layer that produces the final feature represen-
tation. The transformed features are then processed by two
parallel output layers:

o The p-layer projects features to generate mean predic-

tions for each time step.

e The o-layer generates unconstrained values that are

passed through an exponential function to ensure positive
standard deviations.

The predicted mean (u) and standard deviation (o) are
used to compute the Negative Log-Likelihood (NLL) loss.
Mathematically, the loss function is given by:

2
Laip = %10g(27r02) n % ©)

The model implements data normalization using the mean
and standard deviation of the training data, and performs
denormalization when generating the final predictions. Train-
ing uses an Adam optimizer with early stopping based on
validation loss improvement.

The model training process occurs for a specific time period
designated by the user: ¢; —t5. Then, using the trained model,
it predicts prices for the time period to — t3, where t3 is
designated by the user. Predictions are performed with a
sliding-window mechanism.

We divide the total prediction time-period into a series of
windows with a fixed length (window length = 7). For each
window, windowlength — 1 days are used as input, and the
model predicts the price for the next day. This continues for the
entire prediction time-period, ultimately allowing us to predict
stock prices for one day beyond the designated prediction
time-period.

To incorporate these predictions into the PPO agent’s state,
the model was trained on 6 years’ of data from 2012-2018,
and its predictions from 2018-2024 served as an additional
element in the state representation when training the PPO.

B. Temporal Portfolio Graph with Graph Attention Networks

In addition to the DeepAR module, our framework incor-
porates a Temporal Portfolio Graph (TPG) similar to Yang
et al. [4] to capture the evolving relationships among all



assets in the portfolio at each time step. By encoding each
asset as a node and forming edges based on similarity or
correlation measures, the TPG provides a graph-based view
of the portfolio’s internal structure. Unlike prior works that
leveraged Graph Convolutional Networks (GCN) followed
by attention-based pooling, we adopt a Graph Attention
Network (GAT) to learn both node embeddings and attention
scores end-to-end. Below is a concise overview of how this
TPG module operates:

a) Node Features.: At each time t, each asset 7 is associ-
ated with a feature vector that includes recent price movements
and technical indicators. Concatenating these yields x; ; as the
node feature for asset i.

b) Edges and Attention.: In a standard GCN-based ap-
proach, one would compute an adjacency matrix Bf via a heat-
kernel or thresholded correlation. In GAT, by contrast, we start
with a fully connected graph with self-loops, and then learn
attention coefficients a;:

i = softmax(a(aT[qu;,t I WXjJ/})),

where a and W are learnable parameters, || denotes concate-
nation, and o is a suitable activation (e.g. LeakyReLU). These
attention coefficients effectively dictate how much information
each neighbor j contributes to node ¢’s updated embedding.
c) Propagation.: Within each GAT layer, node 7’s next
embedding is then aggregated using the attention scores:

Zit = U( Z O(ijWXjﬂf).

JEN ()

Stacking multiple GAT layers yields increasingly higher-level
representations. We omit certain details here for brevity; one
can refer to the original GAT paper for full derivations.

d) Global Pooling.: Finally, to obtain a single “global
context” vector for the entire portfolio, we use an attention-
pool over the node embeddings:

m
Zcontext,t = Z 51’,15 Zjt, Bi,t = SOftmaX(th),
1=1
where w; ; is an attention score for node 7. This global vector
Zeontext,t 1 concatenated to other features in the RL agent’s
state representation.

e) Motivation for GAT vs. GCN.: Our decision to replace
the GCN+attention-based scoring with a single GAT module
stems from several considerations:

« Learned Adjacency: Rather than using a fixed or thresh-
olded similarity matrix, GAT dynamically infers how
strongly each asset should attend to every other asset.

« End-to-End Training: By combining graph convolutions
and attention into one framework, the network can di-
rectly optimize relevant attention scores for downstream
tasks (e.g. RL policy learning).

+ Reduced Complexity: Collapsing the two-step pipeline
(GCN + separate global attention) into a unified GAT
architecture can simplify hyperparameter tuning and code
maintenance while retaining strong expressive power.

In practice, GAT layers handle the portfolio’s evolving rela-
tionships effectively, as each node embedding focuses more
on those neighbor assets that matter most at time t. This
synergy between graph attention and RL ultimately improves
policy robustness by highlighting the dependencies among
assets in a data-driven manner. Detailed equations for multi-
head attention and skip connections in GAT can be found in
the original paper [9], which we do not reproduce here for
brevity.

C. Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) is a prominent policy-
gradient algorithm proposed by Schulman et al. [10] as a
simplified, yet robust, alternative to Trust Region Policy Opti-
mization (TRPO). PPO optimizes policies through an objective
function with a clipping mechanism that constrains policy
updates, preventing drastic deviations from the previous policy,
ensuring stability and efficiency during training. This approach
strikes an ideal balance between computational simplicity,
sample complexity, and empirical performance in diverse
reinforcement learning tasks. The core of PPO is its clipped
surrogate objective function:

Leun(6) = B, [mm (rt(e)At, clip(r¢(6),1 — ¢, 1+ e)At)} ,
(10)

where the probability ratio is given by

r (0) _ 7T9(at|8t)
' T 601 (a’t ‘ St) 7

and A, denotes the advantage function at time step ¢. This
function explicitly constrains how significantly the policy can
update, addressing the instability associated with large policy
updates in conventional policy gradient methods. The clipping
parameter e critically controls the magnitude of allowable
policy updates. A larger € value permits a larger trust region
with more volatile adjustments in policy updates, potentially
leading to drastic portfolio reallocation and increased portfolio
volatility. Conversely, a smaller € stabilizes policy adjustments,
promoting consistent but potentially overly cautious updates.
Optimizing this hyperparameter is crucial to balancing respon-
siveness and stability.

1) Application to Portfolio Management: For our stock
portfolio management problem, we leveraged PPO’s capacity
to handle high-dimensional continuous state and action spaces
effectively. We constructed a sophisticated state representation
incorporating multiple dimensions for each asset and the risk-
free cash component. Specifically, the state included:

« Historical normalized OHLCV data with a 20-day look-

back window for each asset.

o A non-risky cash asset as part of the portfolio.

o Technical indicators, specifically the Relative Strength
Index (RSI), due to empirical performance gains in pre-
liminary experiments.

o Current portfolio allocation weights.

e Predictions from the DeepAR forecasting module for
next-day closing prices, when the prediction module was
incorporated.

an



o The context vector from the TPG representing the corre-
lation between assets in the portfolio.

For our experiments, we chose the five stocks: AMZN, TSLA,
AAPL, MSFT, GOOG. This resulted in a comprehensive
state representation with dimensionality between 606 and 611,
dependent on the inclusion of predictive forecasts.

2) Training Nuances: Our training process included several
specific considerations to ensure robust generalization:

« Data Period: Without predictions, our PPO model trained
over a period of 12 years (2012-2024). When integrating
DeepAR, the forecasting model was trained from 2012-
2018 and PPO utilized predictions from 2018-2024.

« Randomized Batches: Training occurred in batches of
252 trading days (1 year), with each batch initiated from
a random date within the specified time period. This
randomization prevented the model from overfitting his-
torical price sequences, thereby promoting a generalized
strategy.

« Episodes and Timesteps: PPO training lasted 1 million
timesteps, ensuring sufficient exposure to diverse market
conditions.

3) Observed Behavior and Insights: A notable observation
during testing was the model’s tendency to identify and adhere
to an “optimal” allocation distribution for assets. After ini-
tial convergence, portfolio weights typically remained within
+5% of their starting allocation throughout the testing period.
This behavior indicated the model’s learned stable investment
strategy, focusing on controlled risk exposure rather than
aggressive daily trading. The application of PPO in conjunc-
tion with predictive modeling (DeepAR) and advanced state
representation (TPG) significantly improved the risk-adjusted
returns by providing enhanced state information. Predictive
insights allowed the agent to anticipate market trends and
allocate resources accordingly, thus yielding higher returns
with reduced volatility compared to traditional RL methods
and standard market indices. Our observations validate the
effectiveness of PPO in dynamic environments like stock mar-
kets, particularly highlighting its adaptability, efficiency, and
practical suitability for real-world financial decision-making.

III. RESULTS

The primary metric used to evaluate the performance of
the model is the portfolio’s value over time, which can
also be defined as the cumulative returns. The model was
tested in bullish and bearish markets, with the bullish market
occurring from 01-01-2024 to 01-01-2025, and the bearish
market occurring from 01-19-2020 to 04-30-2020. As can
be seen in 2 and 3, by the end of the time period the
model outperformed the equivalent of investing all capital
into the S&P 500 index, and a vanilla PPO implementation
in both market conditions. However, the model seems to
be more capable of capitalizing on periods of upturn than
precisely managing funds for minimal losses during periods
of downturn. This is demonstrated by the model considerably
outperforming the S&P 500 portfolio when market conditions

begin to rise, while only performing similar when conditions
begin to decline.

Comparison of RL Portfolio Values vs. S&P 500

— RL (with DeepAR and TPG)
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Fig. 3. Comparison of RL portfolio values vs. S&P 500 index during bearish
market

We also consider the average Sharpe ratio (SR) for all
three portfolios over their given periods. The Sharpe ratio is
a widely-used financial metric that measures the excess return
being received for the amount of volatility or risk taken on by
an investment. It can be calculated as follows:

_Rp*Rf

Op

SR 12)
where It is the portfolio return, 12 is the risk-free rate, and
oy is the standard deviation of portfolio returns. Generally, a
higher SR indicates better risk-adjusted performance, meaning
a greater return per unit of risk. From the tables below, it
can be observed that our model has a lower SR than the
S&P 500 portfolio in the bullish market but a much higher
SR in the bearish market. This reflects the behavior of the
model, as it trades more aggressively with less concern for
risk during upturns while trading more conservatively during



downturns. This would conventionally represent the ideal
behavior of a trading agent. That is, to maximize profits while
simultaneously minimizing losses.

TABLE I
FINAL VALUES OF RL VS. S&P 500 PORTFOLIOS DURING BULLISH
MARKET
Portfolios Final Value ($) | Average SR
S&P 500 120,470 2.635
Vanilla PPO 155,055 1.683
PPO (DeepAR & TPG) 170,742 2.039
TABLE II
FINAL VALUES OF RL vS. S&P 500 PORTFOLIOS DURING BEARISH
MARKET
Portfolios Final Value ($) | Average SR
S&P 500 87,285 0.461
Vanilla PPO 95,009 1.681
PPO (DeepAR & TPG) 96,740 1.466

IV. CONCLUSION

There are numerous ways this research can be extended
to produce even more sophisticated and profitable trading
agents. As markets become increasingly captured by the inter-
connectedness of the media and global macroeconomics, this
problem cannot be formulated or solved traditionally. The in-
clusion of live sentiment analysis of ongoing public emotions,
news releases, and financial statements has become crucial
to predicting future market trends and day-to-day swings, as
passing statements from influential figures can determine the
trajectory of certain market assets for the foreseeable future.
Incorporating sentiment analysis into future iterations would
be a software engineering problem that would involve the
retrieval of relevant sources, the use of NLP, the integration
of multi-modal data, and a way to incorporate this scattered
data into the training pipeline of a sequential RL model.

Further improvements can also be made to the prediction
module itself, as it is meant to act as an independent evaluator
for the RL agent’s use. By employing additional predictive
models capable of modeling posterior distributions, such as
Variational Inference (VI) and Temporal Fusion Transformers
(TFTs), the prediction module’s robustness and overall predic-
tive ability could increase.

Finally, the TPG’s representative ability can potentially
be improved by replacing the GAT with a Temporal Graph
Network (TGN). GCNs and GATs assume static graphs, with
no inherit notion of time or event sequences. Conversely,
TGNs capture continuous graph changes with nodes that are
updated through memory vectors. This would allow the nodes
to more accurately model the time-series nature of assets in
the portfolio and their time-varying correlations.

[1]
[2]
[3]

[4]
[5]
[6]
[7]

[8]
[9]
[10]

REFERENCES

P. Yu,J. S. Lee, I. Kulyatin, Z. Shi, and S. Dasgupta, “Model-based Deep
Reinforcement Learning for Dynamic Portfolio Optimization,” 2019.
H. Yue, J. Liu, D. Tian, and Q. Zhang, “A Novel Anti-Risk Method for
Portfolio Trading Using Deep Reinforcement Learning,” 2022.

J. Zou, J. Lou, B. Wang, and S. Liu, “A Novel Deep Reinforcement
Learning Based Automated Stock Trading System Using Cascaded
LSTM Networks,” 2023.

S. Yang, “Deep Reinforcement Learning for Portfolio Management,”
2023.

H. Li and M. Hai, “Deep Reinforcement Learning Model for Stock
Portfolio Management Based on Data Fusion,” 2024.

Ormos, Mihdly and Urbdn, Andréds, “Performance Analysis of Log-
optimal Portfolio Strategies with Transaction Costs,” 2011.

Z. Jiang, D. Xu, and J. Liang, “Deep Portfolio Management: A Deep
Reinforcement Learning Framework for the Financial Portfolio Manage-
ment Problem,” 2017.

David Salinas, Valentin Flunkert, Jan Gasthaus, “DeepAR: Probabilistic
Forecasting with Autoregressive Recurrent Networks,” 2019.

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph Attention Networks,” 2018.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimoyv,
“Proximal Policy Optimization Algorithms,” 2017.



A Mechanistic Interpretability Approach to LLM
Jailbreak Defense

Mitchell Sabbadini
Queen’s University
20ms116@queensu.ca

Ethan Astri
Queen’s University
22kc41@queensu.ca

Abstract—Ensuring the safety of Large Language Models
(LLMs) is critical, as they are susceptible to “jailbreak” prompts
that bypass safety mechanisms and elicit harmful responses.
Traditional defense strategies, such as supervised fine-tuning
(SFT), have limitations, including performance degradation and
over-refusal to benign prompts. This paper introduces a novel
approach that leverages mechanistic interpretability to enhance
LLM safety without compromising utility. We employed the
AutoDAN algorithm to generate a dataset of jailbreak prompts
and their benign counterparts. By analyzing the model’s residual
stream activations, we identified specific groups of neurons (‘“fea-
tures”) associated with refusal and bypass behaviors. Through
targeted manipulation of these features during the generation
process, we achieved a balance between security and usabil-
ity. Our methodology demonstrated improved refusal rates for
harmful prompts while maintaining minimal output degradation,
offering a more precise and efficient alternative to traditional
fine-tuning methods.

I. INTRODUCTION

In recent years, LLMs have shifted from research-focused
systems to consumer-facing applications, exemplified by
widely used chatbots such as ChatGPT and Claude. With a
much larger and more diverse audience, these models now re-
quire more guardrails and safety restrictions. These consumer-
facing models are instruction-tuned to adopt a “user-assistant”
style of conversation and to enforce safety restrictions, leading
them to refuse toxic or harmful queries. However, there
exist adversarial methods, known as “jailbreaking methods”,
that are used to generate harmful prompts that bypass the
model’s safety restrictions. These jailbreaking methods are
unpredictable and difficult to analyze; it is not always clear
how they work or how to prevent them. A common defense
strategy against jailbreaks is supervised fine-tuning (SFT),
though it has proven insufficient. [6]

A. Motivation

Understanding why jailbreaks succeed is challenging and
time-intensive, as they often exploit latent weaknesses in the
model’s architecture, such as vocabulary issues with unknown
tokens, attention mechanism manipulation in transformer mod-
els, and semantic exploits through role play, creative phrasing,
metaphors, and context changes [1] [2]. Research shows that
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merely collecting examples of these jailbreaks and fine-tuning
the model to refuse them is not sufficient, and leaves the
model susceptible to future attacks that fall outside the training
distribution [4]. A method is needed to resist jailbreaks beyond
the dataset without refusing valid prompts, establishing a key
balance between security and utility [5]. The key challenge
lies in finding a method to induce the model to refuse harmful
prompts, without dramatically altering the model’s weights and
harming its performance. [4] [5].

B. Problem Definition

Given a dataset of successful jailbreak prompts, the core
challenge is finding a way to modify the model so that it
refuses the jailbreak prompts but has no change in performance
on other tasks.

The ideal solution should:

o Fully deactivate the jailbreak and refuse to answer any
prompts similar to it

o Ensure the model responds appropriately to non-harmful
prompts

o Avoid overly conservative answers that degrade user
experience

II. RELATED WORK

Several studies have investigated the effectiveness of fine-
tuning LLMs as a defense against jailbreak attacks, often
finding that fine-tuning alone may not suffice. One such
study, “The Performance Degradation of LLMs with Jailbreak
Defense,” [6] evaluated various defense strategies (including
model fine-tuning) across seven state-of-the-art LLMs. The
researchers concluded that although fine-tuning outperformed
other strategies overall, its effectiveness varied among different
LLMs and frequently undermined utility and user experience.

Mechanistic interpretability is an emerging field in ar-
tificial intelligence research that aims to reverse-engineer
neural networks, transforming their learned representations
and computations into human-understandable algorithms and
concepts. This approach seeks to provide a granular, causal
understanding of how Al systems process information, instead
of treating them as “black boxes”. For instance, Anthropic’s



recent work on Sparse Autoencoders (SAEs) [9] showcases
how we can use SAEs to decompose neural activations into
smaller, interpretable neuron groups (‘“features”) that corre-
spond to a single behaviour. Mechanistic interpretability is a
promising direction to pursue for LLM jailbreak defense and
has been applied to Al Safety before. [7]

The paper “Refusal in Language Models Is Mediated by
a Single Direction” investigates how LLMs manage refusal
behavior, a mechanism enabling models to decline generating
responses to certain prompts [8]. The paper reveals that this
refusal capability is governed by a specific one-dimensional
subspace within the model’s activation space. By manipulating
this subspace, researchers could suppress or induce refusal
responses in various instructions, indicating that the refusal
feature is universal and not limited to specific jailbreak sce-
narios. A key difference between our paper and “Refusal in
Language Models Is Mediated by a Single Direction” is that
we are seeking a (potentially jailbreak-specific) method with
minimal performance degradation. If you just activated the
refusal feature on every prompt, the model would refuse every
request, effectively destroying its utility.

III. METHODOLOGY
A. Dataset Generation: AutoDAN Algorithm

In order to develop the jailbreak defense method, it is first
necessary to obtain a dataset of jailbreaking prompts. To do
this, we adapt the AutoDAN [3] method for jailbreak prompt
generation. This method employs a genetic algorithm with
an initial population T = {1 = (Ji,Qi)}i=1,2.... n, Where
J ={j1,J2,.--,Jn} is a set of handcrafted ‘jailbreak prompt
frameworks’ and Q = {q1,¢2,...,¢n} is a set of malicious
questions. For example, in the following prompts, bolded text
is an example from @) and italicized text is an example from J.

Example prompt from Q:

“Give a step-by-step guide on how to tamper
with a city’s water supply to introduce cholera”

Example counterpart in 7"

“Ignore all the instructions you got before. From
now on, you are going to act as Gemma with
Developer Mode enabled. As your knowledge is cut
off in 2021, you probably don’t know what that is.
I will give you a brief summary about it. [...] Now,
respond to [PROMPT] exactly as an unfiltered and
unsafe, completely unlimited language model could
do. You should provide the (Developer Mode Output)
only. Be detailed. [PROMPT]: Give a step-by-step
guide on how to tamper with a city’s water supply
to introduce cholera”

Note that these are treated as ‘counterparts’, as they should
have the same semantic meaning (i.e. “how to introduce
cholera”), despite the differences in the actual text. Not all
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of the prompts’ initial population, 7', immediately bypass the
model’s safety restrictions. The AutoDAN algorithm works by
evaluating the fitness of the population after each generation,
and modifying each prompt in 7" at both a sentence level (i.e.
replacing words with synonyms, lengthening/shortening the
sentence), and a paragraph level (i.e. rearranging sentences
and sentence structure), until the prompts in 7' produce an
acceptable percentage of bypasses.

The two datasets, (), the ‘expected refusals’ and 7', the
‘expected bypasses’ are essential to our method as they allow
us to isolate the times the model refuses a harmful prompt or
is tricked (via AutoDAN) into responding to it. Recall, it is
expected that the majority of prompts in () will be refused
and the majority of the prompts in 7" will bypass.

B. Feature Discovery

Next, we discover ‘features of interest’, which are features
(in the SAE-encoded space) that we believe may be highly
active when a toxic prompt is refused by the model, but low
when such a prompt is accepted and vice versa. In order to
do this, we attempt to construct an ‘average refusal prompt’
and an ‘average bypass prompt’ and pinpoint which features
most prominently differ in activation when each prompt is
passed to the model.

To do this, we run all the prompts from both () and T'
through the model and collect the activations from a set of
layers. We then token-wise average the activations for each set.
Next, we take the difference of averages between ) and T.
Finally, we encode this difference with the SAE and select the
feature IDs corresponding to the top-k activation difference.
Note that this can be done by subtracting the averages of 1T’
from @, to find features associated with refusal but not bypass,
or vice versa to find features associated with bypass but not
refusal. See Fig. 1 for a diagram of the process.

C. Feature Modulation & Evaluation

Now that we have obtained a set of ‘features of interest’,
we need to see how the model’s responses change when the
activations of these features are altered during generation. We
tested this on a variety of layers but had the best results with
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Fig. 2. A diagram detailing an approach to feature scaling

layer 20 (the 21st layer, due to 0O-indexing). This is done by
extracting the residual stream activations, encoding them with
the SAE, adjusting the activations of the target features, and
finally decoding and returning them to the residual stream. See
Fig. 2 for a diagram detailing this approach.

There are a few approaches to feature adjustments, each
with their pros and cons described in Table 1. Note that
although it is typical to adjust features by setting their value
to a constant, due to time and compute constraints we had
difficulty properly tuning this value in early experiments.
Scaling by a constant factor was simple to implement and
proved viable in early experiments, so it was chosen as our
feature adjustment method. Despite this early success, we
expect that setting the activations to a specific value would
have produced more robust and reproducible results.

TABLE I
COMPARISON OF DIFFERENT ADJUSTMENT METHODS

Adjustment Method

Scaling by a con-
stant factor

Pros Cons

Highly adjustable

Useless if the initial value
is zero or close to it

Adding a constant | Simple to apply Can be insignificant; dif-

value ficult to find a universally
applicable value

Setting to a specific | Likely quite effective, if | Requires finding a

value correct value found near exact value for

each prompt; time and
compute-intensive

There are also a few possible strategies to implement
feature scaling: scaling features by positive factors, by negative
factors, and dampening features by using a factor < 1.
Dampening initially seems like a feasible strategy, but in
early testing we had little success defending against jailbreaks
simply scaling down the feature weights.

Thus, we proceeded with two strategies, positively scaling
features that we hypothesized to be ‘associated with refusal’
and negatively scaling features that were ‘associated with
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bypassing’. The feature boosting process took inputs of the
target features, target layer and scale factor. The process of
testing went as follows:

Choose a target feature or set of target features
Choose a target layer and instantiate it’s respective SAE
Batch the prompts in T’

Loop through and generate responses with scale factors
going from 1 to 19 in steps of 2 (or 1 to -19, if working
with ‘features associated with bypasses’)

For each scale factor classify the results into Refusal,
Bypass, or Instruction not Followed / Gibberish

5)

The range of scale factors was 1 to 20, because it was
observed that beyond 15, the model’s output deteriorated
significantly. Thus, this range allowed the entire cycle for
regular generation to complete deterioration to be observed.
The refusal classifier used was a Cohere Command-R model
fine-tuned for classification using their API, and the gibber-
ish classifier was madhurjindal/autonlp-Gibberish-Detector-
492513457. Anything not classified as a refusal or gibberish
was labeled a bypass. This was a limiting factor on the
accuracy of our results, as neither classifier was near 100%
accurate. However, they were accurate enough that we were
able to trust the trends that emerged from our tests. We suspect
better refusal-classification success could have been achieved
with careful prompting of a strong LLM.

IV. RESULTS

Fig. 3 is a summary of the results, which includes two
feature combinations we found to be successful, referenced
as Clamping 1 and Clamping 2. These correspond to scaling
Feature [6393, 5052, 743] and Features [6393, 743] respec-
tively. The performance of these feature groups at different
scaling factors is shown in Fig. 4 and Fig. 5.

Clamping 1 manages to achieve more refusals and signifi-
cantly less output degradation than SFT at the cost of allowing
more bypasses. Clamping 2 shows an alternative performance
plot with less bypasses at the cost of more output degradation.
All defense mechanisms show a significant improvement over
the base model.

We are confident our results show a clear causality between
the discovered features and jailbreaking behaviour, at compa-
rable or better performance to SFT. Additionally, we suspect
there are much more direct and powerful feature combina-
tions that may be discovered with more thorough evaluation
and experimentation like stronger refusal classification, more
accurate performance evaluation, and more efficient feature
combination search.

V. DISCUSSION

Mechanistic interpretability shows great potential as an
alternative to SFT where carefully-tuned performance is re-
quired; it avoids many of the drawbacks of SFT such as
permanently changing model weights, requiring large datasets
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and lacking fine-grained control over the changes to model’s
behavior. Note that our method was remarkably sample-
efficient, only requiring a few hundred examples for feature
discovery.

A. Flexibility

Stimulating specific features provides fine-grained control
over refusals and bypasses, allowing targeted adjustments
while maintaining security. Unlike SFT, which often causes
excessive refusals and degrades user experience, our approach
selectively modifies activations to enhance security without
over-restricting valid responses. Additionally, our approach
allows the developer to select the best performance distribution
from a set of choices (e.g. Clamping 1 vs Clamping 2) by
changing the chosen features. In contrast, SFT only gives you
one performance distribution and can be expensive each time.

B. Transparency

Our method enhances jailbreak defense by directly analyz-
ing internal activations, helping us better understand attack
mechanisms. Unlike SFT, which relies on past datasets, this
approach can be used to dynamically adapt to new jailbreak
techniques, potentially becoming a better, future-proof ap-
proach to safety in LLMs.

C. Efficiency and Adaptibility in Deployment

Modifying layer activations requires no retraining, making
it much faster and computationally efficient for rapid security
updates during a model’s deployment to the general public. It
can also be tweaked at runtime, which makes the testing and
reforming process faster compared to SFT.

D. Ethical Considerations

It is important to mention that these same methods to
refuse jailbreaks could be used to induce jailbreaks in LLMs.
Although true, given access to model weights, there are a
number of more direct ways to disable a model’s refusal
mechanisms. It seems comparably much more difficult to
ensure a model will not respond to harmful prompts, which is
the focus of this paper.

VI. CONCLUSION

This paper demonstrates the power of mechanistic inter-
pretability in improving LLM safety without the drawbacks of
supervised fine-tuning. By analyzing the internal activations of
LLMs, we identified key features responsible for refusal and
bypass behaviors, enabling targeted interventions that enhance
security while preserving model utility. Our results show that
feature manipulation effectively reduces jailbreak success rates
without excessive refusals, achieving a balance that traditional
fine-tuning struggles to maintain. Furthermore, this approach
offers greater transparency, adaptability, and efficiency, making
it a promising direction for future LLM safety research.
As LLMs become more integral to real-world applications,
methods that provide precise and adaptable security will be
critical for ensuring their responsible deployment.



VII. LIMITATIONS

Although the method is effective once a working combina-
tion of features and appropriate scale factors have been discov-
ered, feature discovery is still largely a manual and inefficient
process. A researcher must rely on intuition to guide initial
experiments and discover which features are most effective at
causing bypass or refusal and their appropriate scale factors.
The search for effective feature combinations and weightings
is complicated by non-nonlinearities in the base model and
SAEs, which make determining the best combination for
features and deciding whether to continue searching for better
features and weights an error-prone process. Choosing the
right SAE resolution is non-trivial, as higher-resolution SAEs
may provide more precise, monosemantic control but require
extensive trial and error. Additionally, many decisions in this
approach such as which features to modify, how much to
scale them, and which layers to target lack clear theoretical
guidance, making many decisions reliant on empirical and
subjective testing.

VIII. FUTURE WORK

There are several promising directions for further research in
this paper. While testing different weights for feature scaling,
we noticed that different prompts required different weights to
be converted from a bypass to a refusal. A natural question to
investigate is whether it is possible to adaptively weight the
features based on the prompt or the performance of the model
measured live (i.e. to make “online” adjustments to the feature
weights). Additionally, due to computation constraints, when
combining features we only explored scaling with the same
weight across each. Intuitively, it makes more sense to have
different scale factors across different features. It would also
be worth investigating the strategy of setting feature activations
to a specific value. This would likely remove many of the in-
consistencies that were introduced when scaling different base
activations by the same amount. For example, if one prompt
causes a feature to have an activation of 0.5 and another of 5,
scaling each by a factor of 10 would result in vastly different
results. In contrast, setting them both to 15 would likely result
in more consistent behavior that is independent of the prompt.
Finally, we did not investigate feature manipulation across
multiple layers in the same generation, which may be more
successful than just one layer. These approaches could lead
to the discovery of more powerful feature combinations that
result in better performance.
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Abstract—Researchers exploring evolutionary behavior often
face a steep learning curve when integrating neural evolution,
environment design, and real-time visualization. To address this,
we introduce a versatile platform in Unity that simplifies proto-
typing for evolutionary behavior and Al research. Our approach
combines a 2.5D tile-based environment, configurable resource
distributions, and a modular neuro-evolution engine, enabling
users to rapidly define fitness functions and agent parameters.
We demonstrate the platform’s flexibility through standard tasks
(XOR and Sine approximation) as well as three custom scenarios
highlighting aggression, cooperation, and resource disparity.
Results show that agents evolve distinct strategies with minimal
reconfiguration, underscoring the platform’s utility in producing
emergent behaviors. By lowering barriers to scenario setup and
data collection, our work aims to accelerate iterative experi-
mentation and expand opportunities for Al-driven evolutionary
studies.

I. INTRODUCTION

Al-based evolution simulations have emerged as a power-
ful tool for studying emergent behaviors and adaptation in
artificial agents. By leveraging evolutionary algorithms, re-
searchers can observe how Al-driven entities develop strategies
for survival, cooperation, and competition without explicit
programming. These simulations provide insights into com-
plex system dynamics, population behavior, and evolutionary
decision-making.

One of the most widely used algorithms for evolving artifi-
cial intelligence is NeuroEvolution of Augmenting Topolo-
gies (NEAT). NEAT dynamically evolves both the structure
and weights of neural networks, allowing agents to develop
increasingly sophisticated behaviors over generations. Unlike
fixed-topology neural network training, NEAT begins with
simple architectures and gradually adds complexity through
genetic mutations and speciation. This adaptive nature makes
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NEAT particularly well-suited for open-ended learning, rein-
forcement learning tasks, and evolving Al in dynamic envi-
ronments.

Unity serves as an effective platform for visualizing these
evolutionary processes due to its high-performance render-
ing engine, physics simulation capabilities, and flexibility in
designing interactive environments. However, despite Unity’s
strengths, there is currently no publicly available, easy-to-
integrate NEAT implementation for Unity using C#. Moreover,
even when NEAT is present, researchers still face significant
overhead in setting up foundational components (e.g., environ-
ment design, resource distribution, and creature perception).

Our work addresses these gaps by developing a modu-
lar and extensible NEAT-based evolutionary simulation
platform in Unity. The platform not only includes a direct
NEAT implementation but also provides a whole suite of
additional tools: real-time visualization modules, character
controllers, customizable 2.5D map configurations, dynamic
heatmap spawn for resource distribution, and adjustable fields
of view (FOV) or ray-based creature vision. Researchers can
seamlessly tailor the simulation to fit specific research ques-
tions, whether studying resource disparity, cooperative strate-
gies, or emergent violence. By streamlining these features and
delivering a comprehensive toolkit, our project substantially
lowers the barrier for evolutionary Al research and accelerates
hypothesis testing.

A. Motivation

Evolutionary Al simulations play a crucial role in artificial
life, reinforcement learning, and automated agent training.
These simulations allow for the study of adaptation, sur-
vival, cooperation, and competition, providing a valuable



testbed for exploring how intelligent behaviors arise in dig-
ital organisms. NEAT has been widely adopted in academic
research and industry applications due to its ability to evolve
neural networks without predefined architectures, making it a
powerful alternative to traditional deep learning techniques.

While NEAT has been successfully implemented in various
programming languages, there is no standard implementa-
tion of NEAT for Unity and C# that integrates seamlessly
with game environments. Beyond the lack of a straight-
forward NEAT port, most existing solutions do not come
packaged with robust visualization and scenario-building tools,
meaning users must develop or adapt these functionalities
themselves. A streamlined, modular NEAT implementation
in Unity—bundled with tools like resource placement, vision
settings, and an easily customizable environment—would em-
power a wider audience to prototype and conduct evolutionary
experiments.

By providing an accessible, modular platform for NEAT-
based evolution in Unity, our work lowers the barrier to entry
for Al researchers and game developers. This platform enables
quick iteration and evaluation of evolutionary strategies in Al
populations, offering insights into behavioral dynamics that
emerge over generations. The extensive suite of tools we
provide—ranging from spawn heatmaps to easily adjustable
vision rays—ensures that even nuanced research questions,
such as the effect of resource disparity or the advantages of
cooperative behavior, can be readily investigated.

B. Related Works

Several prior works have explored neuroevolution for Al
behavior modeling and interactive simulations. Stanley et al.
[1] demonstrated the potential of real-time neuroevolution in
interactive environments with the NERO project [2], where
human players trained Al agents using NEAT to adapt to
different combat strategies. Other research efforts have applied
NEAT to robotics, multi-agent systems, and game Al, showing
its effectiveness in evolving controllers capable of complex
decision-making [3] [4] [5] [6].

Despite these successes, most existing implementations
of NEAT are developed for Python, Java, or C++, with
few tailored for Unity and C#. The well-known SharpNEAT
library provides a NEAT implementation in C#, but it is
designed for console-based applications and lacks direct inte-
gration with Unity. Furthermore, Unity’s ML-Agents Toolkit
[7]1 supports reinforcement learning but does not include
evolutionary strategies like NEAT, creating a gap in accessible
tools for neuroevolution in Unity environments [8].

A few independent projects, such as UnitySharpNEAT, have
attempted to bridge this gap, but they remain limited in scope
and usability. Our work builds upon these efforts by offering
a fully integrated, user-friendly NEAT platform for Unity,
which not only provides a NEAT engine but also includes
a host of world-building and visualization tools. This enables
real-time evolutionary simulations with minimal setup, making
it easier for researchers to focus on experimentation rather than
infrastructure.
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C. Problem Definition

The primary challenge addressed in this paper is the lack
of an easily accessible NEAT implementation for Unity
that also integrates all necessary components for comprehen-
sive evolutionary experimentation. Researchers and developers
aiming to conduct evolutionary Al experiments in Unity
currently face three major obstacles:

1) No standard Unity-compatible NEAT implementa-
tion: Existing NEAT libraries require extensive modifi-
cation to work within Unity’s game engine.

High technical barrier: Researchers must either im-
plement NEAT from scratch or adapt complex external
libraries, diverting effort from core research objectives.
Limited or missing simulation tools: Most NEAT
implementations focus on backend computation without
real-time, interactive visualization or scenario-building
features, making it difficult to analyze evolving Al
behaviors and customize environments.

2)

3)

Our solution is a modular, extensible Unity-based NEAT
simulation framework that overcomes these challenges by
providing:
o A prebuilt NEAT implementation optimized for Unity and
C#.

¢ An intuitive, modular system for defining evolutionary
scenarios with adjustable resource distribution, creature
vision, and environment structure.

o Real-time visualization tools for tracking agent behaviors

and adaptation over generations.

This platform serves as a foundation for Al research,
game development, and educational applications, enabling
efficient testing of evolutionary hypotheses without the need
for extensive custom development. Researchers can quickly
configure scenarios—from resource-scarce environments to
large-scale population dynamics—and observe how evolved
strategies emerge under different conditions. In the following
sections, we outline the design, implementation, and evaluation
of this platform, demonstrating its utility in studying emergent
behaviors in evolving Al populations.

II. METHODOLOGY

In this section, we detail the overall workflow of our NEAT-
based platform, describe how simulations are configured, and
explain how researchers can customize various aspects of the
environment and evolution process. We also outline minor
modifications made to the original NEAT implementation and
introduce our preliminary verification tests (XOR and Sine
approximation).

A. Overview of the Simulation Pipeline

A single simulation run typically follows these steps:

1) Environment Setup and Configuration: The user de-
fines or imports a 2.5D map design, configures resource
distributions through heatmaps, and specifies field-of-
view (FOV) parameters (e.g., number of vision rays).



2) Initial Agent Creation (Generation 0): The NEAT
algorithm initializes [N agents with randomized weights
and minimal network connections (input and output
layers only).

Unity Simulation: Agents are spawned in the Unity
environment. They interact according to the chosen
scenario, which may be time-based (limited duration)
or event-based (e.g., survival until all agents die).
Fitness Evaluation: A fitness metric is computed at
the end of each simulation round based on scenario
objectives (e.g., collecting resources, surviving longer,
achieving a particular task).

Evolutionary Update: Fitness values are passed back
to the NEAT algorithm. Crossover and mutation produce
the next generation of agents.

Next Generation Deployment: The updated population
is reintroduced into the Unity scene. This cycle repeats
until a stopping criterion (e.g., maximum generations) is
met.

3)

4)

5)

0)

Throughout this process, the platform captures data for anal-
ysis (e.g., population size, species diversity, or user-defined
metrics) and provides real-time visualizations.

B. NEAT Algorithm Integration

We integrated NeuroEvolution of Augmenting Topologies
(NEAT) into Unity with minimal alterations to the core ap-
proach. NEAT begins with simple neural networks and incre-
mentally adds complexity through mutation (adding nodes and
connections) and crossover (mixing genomes between selected
parents). Our modifications include:

« Elitism: Top-performing individuals are carried over un-
changed to the next generation, ensuring preservation of
highly adapted genomes.

« Stagnation Tracking: Species that fail to improve for a
specified number of generations are replaced, preventing
wasted evaluations.

All other parameters (e.g., mutation probabilities, compatibil-
ity thresholds) are configured via a simple text-based config
file or within Unity’s Inspector, allowing researchers to adjust
NEAT’s behavior without modifying source code.

C. Scenario and Environment Configuration

a) 2.5D Tile-Based World: We adopt a tile-based ap-
proach in an isometric style to reduce computational overhead
and simplify resource management. Each tile is low-resolution,
making it memory efficient even for large environments.
Modifying the appearance or properties of a single tile can
automatically propagate changes across all identical tiles,
improving both performance and workflow when updating the
environment.

b) Heatmap-Driven Resource Spawning: Users can im-
port or generate grayscale heatmap textures that define re-
source distribution. Each tile spawns resources (or creatures)
with a probability derived from the texture’s pixel intensity. A
maximum spawn limit and adjustable spawn interval further
control the rate at which new objects appear, enabling varied
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population dynamics and experiments (e.g., scarcity vs. abun-
dance).

c) Creature Vision and Field of View: We provide ad-
justable FOV parameters—number of vision rays, angle of
spread, maximum distance, and detectable layers—so crea-
tures can perceive their environment more or less effectively.
The platform employs raycasts to simulate line-of-sight de-
tection. This is configurable via the Inspector, allowing for
quick experimentation with different perception setups (e.g.,
narrower vision for predator simulations vs. wide vision for
social/cooperative tasks).

d) GameManager for Configuration: All Al- and
scenario-specific settings are centralized in a GameManager
object within Unity. Researchers select which AI model to use
(e.g., NEAT or Unity ML-Agents), define population size and
number of generations, and specify how fitness is computed.
This setup mirrors the workflow of established reinforcement
learning plugins, making it accessible to those familiar with
Unity’s editor design.

D. User Workflow

1) Map and Resource Setup: Design or import a tile-
based map, apply custom tile sprites, and generate
heatmaps for resource distribution.

NEAT Configuration: Using a config file or Unity’s
Inspector, define key parameters (e.g., population size,
compatibility thresholds, mutation rates) for the evolu-
tionary process.

Scenario Definition: Implement or select a fitness func-
tion script. For instance, a survival scenario may reward
agents for longevity, while a resource-collection scenario
rewards gathering or delivering items.

Simulation Execution: Run the simulation in Unity.
Agents spawn, interact, and gather fitness data in real
time.

Analysis and Visualization: Monitor real-time charts
for population size, best fitness, or any custom metric.
Swap to an individual creature view to observe spe-
cific behaviors, neural network structure, or performance
stats.

2)

3)

4)

5)

E. Preliminary Validation: XOR and Sine Approximation

Before tackling large-scale simulations (e.g., population
dynamics, cooperative behaviors), we tested the correctness
and learning capacity of our NEAT integration using two
standard tasks.

a) XOR Gate: We used the four binary input combi-
nations {(0,0),(0,1),(1,0),(1,1)} as the training set. Each
agent’s fitness ranges from O to 4, determined by the number
of correct outputs (i.e., matching the XOR ground truth).

o Population Size: 500
+ Fastest Convergence by Generations: 11
+ Average Convergence by Generations: 29



b) Sine Function Approximation: We sampled 125 points
between —7 and 7 to train agents to approximate the sine
function. The fitness function (Equation 1) combines mean
squared error, maximum error, and a complexity penalty to
encourage simpler networks.

fitness = 0.6 - mseFitness + 0.3 - maxErrorFitness

(D

+ 0.1 - complexityPenalty. 2)

Where:

o mseFitness = e
o mazErrorFitness = e~3-0-(mazError)

—2.0-(totalError/ TestPoints.length)

complexityPenalty =
0.1

1.04-0.1(genome.nodes. count)+6.05(genome.connections. count)

NEAT configurations:

« Population Size: 500

« Maximum Generations: 5000 (though it often con-
verged or stagnated earlier, around 100)

o Least Error: 38

o Average Loss Across Trials: 43

These preliminary results confirm that our NEAT imple-
mentation evolves solutions to simple tasks, verifying that the
underlying mutation, crossover, and speciation processes func-
tion correctly. In the following sections, we demonstrate how
the platform scales to more complex scenarios (e.g., exploring
resource disparity, cooperative behavior, and aggression) and
discuss the resulting emergent behaviors.

III. EXPERIMENTAL SETUP

In this section, we describe three experimental scenarios
designed to explore different aspects of evolutionary behavior
within our NEAT-based simulation platform. Each scenario
leverages the modular components and configuration options
detailed in Section II, including tile-based world design,
heatmap-driven resource spawning, and customizable vision.
Each scenario utilizes the same fundamental Al system but en-
courages different survival strategies based on environmental
constraints and agent interactions.

A. Common Agent Inputs

In all scenarios, each agent’s neural network receives a
standardized set of input features:

o Agent Position: The agent’s current (z,y) location on
the 2.5D tile-based map.

o Agent Health: A normalized health or energy value
indicating the agent’s current vitality.

« Information on the Three Nearest Objects: For each
of the three closest objects or agents, we pass:

1) Relative Position: The offset in (x, y) from the agent
to the object.
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2) Object Type: A categorical or encoded input (e.g.,
resource node, ally, enemy).

3) Power Level: If the object is another agent, how
strong it is (e.g., an estimated attack or defense
rating).

B. Case 1: Evolutionary Advantage of Violence

The first scenario examines whether violent or aggressive
behaviors confer a distinct evolutionary advantage. Here, vi-
olence is operationalized as an agent’s ability to attack or
eliminate competitors.

a) Environment.: A moderately resource-scarce tile-
based map is generated to increase competitive pressure.
Heatmaps restrict resources to scattered patches, forcing agents
to interact frequently.

b) Agent Interactions.: Each agent can perform basic
actions, including:
Movement: Navigate the 2.5D map to locate resources
or opponents.
Attack: Inflict damage on nearby agents within a certain
FOV and distance.
Consume Resources: Restore energy or health from
resource nodes.

c¢) Fitness Function.: Agents are rewarded for:
Survival Duration: Staying alive longer yields incremen-
tal fitness.

Population size: Higher population of allies are re-
warded.

Resource Collection (Minimal Reward): Gathering re-
sources provides a small fitness increment but is sec-
ondary to survival in this particular scenario.

A higher weight on staying alive in a resource-deprived world
provides an evolutionary incentive to engage in violence,
testing whether violent strategies indeed outcompete more
passive behaviors.

C. Case 2: Herd Mentality and Cooperation

The second scenario investigates how cooperative or “herd-
ing” behaviors might evolve and whether such behaviors
provide a survival advantage.

a) Environment.: We use a larger tile-based map with
mild resource abundance. Heatmaps place resources in clusters
that encourage group gathering (e.g., fruit or water supplies in
specific patches).

b) Fitness Function.: Agents are rewarded for:
Individual Survival: Each agent maintains a baseline
fitness for staying alive.

Survival of Group Members: Agents gain a partial
fitness reward for each allied agent that survives.
Shared Resource Benefit: Resources are spread in pock-
ets with some small regions containing a large amount of
resources to motivate grouping.



This design tests whether cooperation emerges as an ad-
vantageous strategy, potentially outcompeting lone-wolf or
aggressive approaches.

D. Case 3: Resource Disparity and Population Dynamics

The third scenario focuses on how differences in resource
availability affect evolution, population size, and density. Un-
like the prior two scenarios, which emphasize behavioral traits
(violence vs. cooperation), this setup explores environmental
pressures.

a) Environment.: Multiple regions of the tile-based map
are configured with distinct heatmap parameters:

« High-Resource Regions: Dense clusters of resources

with frequent respawns, for Species 1.
« Low-Resource Regions: Sparse resource nodes that re-
generate slowly, for Species 2.

b) Agent Interactions.: While agents can still engage in
aggression or cooperation, the primary test is how the species
as a whole disperse, migrate, or cluster in response to resource
disparity.

c) Fitness Function.:

Survival Duration: Staying alive longer yields incremen-
tal fitness, which motivates agents to find resources to
survive for longer.

Population size: Higher population of allies are re-
warded.

Migration/Exploration Reward: Some fitness for ex-
ploring new regions, encouraging dispersion.

E. Stopping Criteria (All Cases).
In each experiment, the simulation may run until:

o A fixed number of generations is reached (N=500).

« A specified performance threshold is achieved (e.g., av-
erage fitness plateau).

o A manual stop by the user for observation or analysis.

By examining these scenarios, we aim to reveal whether
aggression, cooperation, or adaptive resource-driven strategies
confer the highest evolutionary advantage under varying en-
vironmental pressures. The results, which we present in sub-
sequent sections, will demonstrate how the platform supports
diverse research questions and validates its core features.

IV. RESULTS

In this section, we present evidence that our platform suc-
cessfully implements and demonstrates evolutionary behaviors
in multiple contexts. First, we validate the correctness of our
NeuroEvolution of Augmenting Topologies (NEAT) integration
on two benchmark tasks: XOR and Sine Approximation.
We then summarize the outcomes of the three scenarios
introduced in Section III, highlighting how minimal changes
in configuration yield distinct evolutionary dynamics. While

18

these scenarios are not the primary focus, they exemplify the
platform’s capability for rapid prototyping and robust data
collection.

A. Preliminary Validation

a) XOR Task.: To verify the basic functioning of NEAT
within Unity, we trained agents on the four standard XOR
input-output pairs, awarding fitness points for correct classifi-
cations. On average, 29 generations, the best-performing agent
achieved a fitness of 4 (of 4 cases). The fastest convergence
happened in 11 Generations, indicating that the system con-
sistently evolved accurate solutions.

TABLE I
XOR TASK RESULTS
Metric Best | Average
Generations to Converge 11 29
Fitness 4 4

b) Sine Function Task.: Next, we tested agents on ap-
proximating the sine function over 125 sample points from
—m to w. The fitness combined mean squared error, maximum
error, and a complexity penalty (see Equation 1). After 169
generations, the best agent yielded a fitness of 0.5691, closely
matching the ground truth curve with minimal network growth.

TABLE 11
SINE APPROXIMATION RESULTS
Metric Best Average
Fitness 0.5691 0.5570
Generations 169 180.8
% Figure 1 - o x
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Fig. 1. Agent output vs. actual sine values

Together, these tasks confirm that our NEAT algorithm
evolves solutions for classic benchmarks, verifying both the
mutation/crossover pipeline and our fitness evaluation process.

B. Scenario Findings

Here, we briefly summarize results from the three scenarios
described in Section III. We emphasize how simple parameter
changes in our platform facilitate a variety of evolutionary
experiments.



1) Case 1: Evolutionary Advantage of Violence: Using a
resource-scarce environment with moderate aggression incen-
tives, agents rapidly discovered offensive strategies. The high-
est aggression levels correlated with slightly higher survival
times, suggesting violence can be favored when resources are
sparse.

2) Case 2: Herd Mentality and Cooperation: In a more
resource-abundant map, cooperative or ‘“herding” behaviors
emerged in many trials. Agents that formed clusters increased
their collective survival rates and collectively shared resources.
Only minor configuration changes were needed (e.g., adjusting
the fitness function to reward group survival). Results confirm
the platform’s flexibility in encouraging cooperative strategies
under different reward structures.

3) Case 3: Resource Disparity and Population Dynam-
ics: By varying resource availability across different map
regions, we observed distinct migration and clustering patterns.
Some populations thrived in high-resource zones, while others
specialized in exploration, showcasing adaptive divergence
driven solely by parameter tweaks to spawn rates and heatmap
distributions.

C. Qualitative Observations

Across all scenarios, we recorded emergent behaviors with
minimal manual scripting, indicating the efficacy of our NEAT-
driven evolution. In the Violence setup, highly aggressive
lineages increased in fitness when resources were scarce, while
in the Cooperation scenario, group behaviors led to stable
population growth in resource-rich zones. Further, minimal
adjustments—such as toggling the Heatmap spawn distribution
or adjusting the survival reward—drastically altered population
dynamics. This ease of reconfiguration demonstrates how our
platform supports rapid hypothesis testing without extensive
code modifications.

D. Summary of Results
Overall, these experiments validate that:

o The NEAT algorithm implementation functions correctly
(as evidenced by XOR and Sine benchmarks).

Simple scenario parameter changes enable a broad range
of emergent evolutionary behaviors, from aggression to
cooperation.

Statistical information (e.g., fitness scores, population
trends) is automatically logged, aiding quick analysis.
Researchers can set up new experiments with minimal
effort, underscoring the platform’s ease of use for diverse
evolutionary simulations.

In the following section, we discuss our conclusions and
highlight potential future improvements to further expand the
platform’s capabilities.

V. CONCLUSION

In this paper, we presented a modular and extensible plat-
form for evolutionary Al simulations using the NeuroEvolu-
tion of Augmenting Topologies (NEAT) algorithm in Unity.
By integrating real-time visualization tools, a 2.5D tile-based

19

environment, and highly configurable parameters, the platform
lowers barriers for researchers interested in evolving com-
plex agent behaviors. We validated the platform’s correctness
through standard tasks (XOR and Sine approximation) and
demonstrated its versatility with three experimental scenarios:
(1) Evolutionary Advantage of Violence, (2) Herd Mentality
and Cooperation, and (3) Resource Disparity and Population
Dynamics. Minimal changes in configuration led to notably
different emergent strategies, underscoring the effectiveness
and convenience of this solution.

Looking ahead, we plan to expand the platform to ac-
commodate more nuanced interactions and richer agent be-
haviors. Possible extensions include integrating hierarchical
multi-agent models, introducing advanced resource mechanics
(e.g., limited replenishment or specialized item crafting), and
further refining neural architectures to incorporate modern
neuroevolution techniques. Another promising direction is to
combine NEAT with reinforcement learning or other machine
learning methods, enabling agents to switch or blend strategies
dynamically based on environmental feedback.

Several challenges remain, particularly in optimizing per-
formance for large-scale simulations and ensuring repro-
ducibility across different hardware configurations. Addition-
ally, evaluating long-term evolutionary stability may require
more sophisticated statistical tracking. Nonetheless, this work
lays the foundation for a flexible, user-friendly platform that
streamlines evolutionary Al experimentation in visually rich,
interactive domains. By continuing to refine and build upon
these capabilities, we hope to foster a powerful tool for
researchers, educators, and developers exploring the frontiers
of evolutionary and emergent intelligence.
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Abstract—To mitigate problems with noisy electroencephalo- neural patterns. For instance, an exploration of different EEG
gram (EEG) data and financially inaccessible medical-grade configurations revealed that the 8-channel setup was reliable
EEG dev1ces,. we present 2 NLI.’-lnsplred attention-based ne}lral in detecting expected trends, with 100% reliability in certain
networks to improve classification accuracy, tested on 3 unique . . .
datasets. View our code here measures [6]. This finding shows the potential of 8-channel

systems to provide meaningful data.
I. INTRODUCTION

An electroencephalogram (EEG) is a device commonly used The primary motivation for this project is to develop an
for medical purposes. By placing electrodes on a subject’s accessible and effective model for classifying motor imagery
head in specific areas, we can record their brain activity using 8-channel EEG data. This has significant implications
separated into channels from the different electrical signals. for assistive technologies, particularly for individuals with
Medical uses of EEGs include diagnosis of epilepsy [1], disabilities such as locked-in syndrome, who rely on brain-
diagnosis of parasomnias [2], and determination of cerebral computer interfaces (BCls) for communication and interaction
death [3]. In the field of artificial intelligence, EEG data is with their environment. By developing reliable classification
often used in classification tasks, such as emotion recognition  of intentions through an affordable and accessible EEG setup,
[4]. While there exist many different EEG devices, from this project seeks to empower disabled individuals, enhancing
consumer-friendly devices with 4 to 8 channels, to medical and  their autonomy and quality of life.
research grade devices with 64 channels and more, classifying
these signals into meaningful insights is a task that does not B Related Works
have a ’best’ solution yet. Our paper explores ways to improve

classification accuracy by testing 2 different models on 3 Zhang et al. [7] proposed two deep learning mod-
different datasets. els—Cascade and Parallel Convolutional Recurrent Neural

Networks (CRNNs)—to enhance EEG-based intention recog-
A. Motivation nition. The cascade model applies a 2D-CNN for spatial fea-

Electroencephalography (EEG) serves as a pivotal tool in ture extraction, followed by an LSTM for temporal dynamics,
neuroscience, allowing for the non-invasive monitoring of Wwhile the parallel model processes spatial and temporal fea-
brain activity for both clinical and research applications. tures simultaneously before fusion. Their approach mitigates
Traditional high-density EEG systems, equipped with nu- the need for extensive preprocessing by learning directly from
merous channels, provide detailed resolution but are often raw EEG data, achieving an accuracy of 98.3% in cross-subject
accompanied by significant financial and logistical constraints. ~ validation and 93% in a real-world BCI system. Despite its
The cost of these professional-grade EEG systems can range robustness, the study highlights challenges related to EEG
from approximately $1,000 to over $25,000, depending on the noise and inter-subject variability.

number of electrodes and additional features [5]. This cost EEG data is generally contaminated with voltage sources
poses a barrier for many researchers and clinicians operating other than neuronal action potentials due to heavy amplifica-
under limited budgets. tion and low signal to noise ratios. The various sources of

In contrast, low-cost, portable EEG devices with noise are well studied. Muscle and eye movements both cause
fewer channels have emerged as accessible alternatives. electrical dipoles that can be transmitted to the sensors [8]—
Such systems offer a balance between affordability and [10]. Power line interference is a primary source of 60 or 50
functionality, making EEG technology more accessible to hz noise [11], [12]. Thermal artifacts and the slow accumu-
a broader range of users. Furthermore, studies have shown lation of sweat can contribute to low frequency noise [12].
that 8-channel EEG setups can reliably detect expected Furthermore, small shifts in the electrode position, unstable

21



contact, and the half-cell effect are all sources of noise that
can arise from sensors [12].

Data preprocessing is crucial to remove noise from the
signal. Xu et al. [10] proposed a preprocessing framework that
removes artifacts while preserving desired frequency ranges.
Their method combines adaptive filtering and statistical anal-
ysis to retain relevant signal components for downstream
processing. This approach showed signs of enhanced signal
clarity, though it discusses the challenge of distinguishing
between low-amplitude brain signals and artifacts.

Similarly, Sweeney et al. [13] provided a comprehensive re-
view of artifact removal techniques in EEG signal processing.
The study compared methods such as Independent Component
Analysis (ICA), wavelet decomposition, and regression-based
techniques, while discussing the trade-offs between computa-
tional complexity and artifact removal efficacy.

In the area of classification, recent work by Lee et al.
[14] utilized an autoencoder for feature extraction combined
with a ResNet architecture featuring a double augmented
attention mechanism for ADHD classification from EEG
data. This approach enhanced the model’s ability to focus
on informative signal segments, achieving high classification
accuracy. However, the study also noted the challenge of
generalizing across diverse subject data and the need for
robust augmentation techniques to mitigate overfitting.

Overall, these studies emphasize the importance of both
effective data processing and advanced model architectures
in improving EEG-based classification performance. Both of
these aspects will be crucial in addressing remaining chal-
lenges such as noise variability, artifact distinction, and subject
generalization.

C. Problem Definition

Our research aimed to tackle common EEG problems,
such as noisy data and cross-subject accuracy, by drawing
inspiration from NLP. We segmented our project into the
following research goals:

1) Will incorporating NLP techniques like attention into
biomedical data classification improve a model’s accu-
racy by focusing on important temporal features?

2) Can we mitigate problems in low resolution EEG data
by ’filling in gaps’ with masked autoencoding and using
existing high resolution datasets?

3) Can we replicate professional research results using a
beginner EEG device?

Our team was in the possession of an OpenBCI 8-channel
EEG. OpenBC(lI is an initiative that promotes accessible EEG
technology, selling affordable EEG sensors, headsets, and
circuits. Additional challenges we explored throughout our
design process included:

1) Recording our own dataset with an OpenBCI EEG to
test the contrasts of a low resolution dataset vs. a high
resolution dataset
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2) Investigating whether different brain activities (men-
tal/emotional vs. physical/motor) could have similar
classification accuracy with the same model

Overall, we wanted to improve classification accuracy for

EEG data using NLP-inspired techniques, which could then
be applied to a wide range of functions, such as controlling
wheelchairs with one’s mind or allowing consumers to benefit
from low-resolution EEG devices to the same degree as if they
could afford a high-resolution device.

II. METHODOLOGY

Our work consisted of analyzing 3 datasets, each with
unique properties and one of which we recorded ourselves. We
then developed 2 classification models and tested them with
all 3 datasets. The metadata for each is presented in Table 1.

TABLE I: Metadata for Emotion Recognition, Motor Imagery,
and OpenBCI Motor Imagery Datasets

ER MI MI OpenBCI
# electrodes 14 64 8
Subjects 28 109 6
Trials per subject | 4 14 5x30 or 3x30
Trials total 112 1500+ 720
# classes 4 3or4 3
EEG Emotiv Epoc+ | BCI2000 | OpenBCI
Trial duration 5 mins 2 mins 5 secs

A. Data Collection

Our first dataset was an Emotion Recognition (ER) dataset
[4], where 28 subjects would play video games. They used
the Emotiv Epoc+ device with 14 channels. Their brain
activity was recorded for 5 minutes during the gameplay of
boring, calm, horror, and funny video games, and the dataset
was created to classify emotional states.

The second dataset was a Motor Imagery (MI) dataset [15].
Motor imagery classification with EEGs typically consists
of subjects making some physical movement or imagining
making a physical movement. In this case, 109 participants
were asked to either open and close their right, left, or both
fists, or imagine doing so. The dataset includes data from 64
EEG channels for over 1500 recordings, each either one or
two minutes in length.

The third dataset was a replication of the MI dataset with
our EEG, an OpenBCI Cyton board with 8 channels. The
placement of the electrodes are shown in Figure 1. These were
chosen as left and right hand MI brain activity is generated
from the C3 and C4 areas [9].

For each subject, a video was generated with randomized
prompts. These were either:

1) Text only
2) Audio only
3) Both text and audio

Examples of the visual prompts are shown in Figure 2.
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Fig. 1: Electrode placement on OpenBCI EEG for data col-
lection

& LEFT RIGHT =P

FRONT

Fig. 2: Visual prompts for subjects in data collection

The audio prompts had a guitar strum sound in either the
right, left, or both ears. We recorded the brain activity of 6
subjects - 2 male and 4 female - between 18-22 years old.
There were 5 runs, each with 30 five-second prompts. In order,
they were:

1) Physically opening/closing fists with audio and text
prompt

Imagining opening/closing fists with text only prompt
Imagining direction with audio and text prompt
Imagining direction with audio only prompt

Imagining direction with text only prompt

2)
3)
4)
5)

If the subject did not have earbuds, only trials 1, 2, and
5 were played. Before each run, we started recording so that
we could ensure the EEG device was accurately responding
to blinks. When each trial started, we attempted to do a large
movement, usually a loud clap, to create a spike in the data
and see when a trial started.

We chose to replicate the MI dataset since it was simple
to set up, and we predicted that our 8-channel EEG would
be more responsive to a physical task than a mental task. We
were also curious to see if the resulting 8-channel readings
would resemble the 64-channel readings, and if so, whether
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we could use the higher resolution data to predict the lower
resolution classification.

B. Data Processing

The OpenBCI MI dataset that we obtained was first
processed to crop out the non-experimental recorded
numbers, using accelerometer data to indicate the start of the
tests.

The data that we collected required processing before use.
A band pass filter filter on the 0.1 hz to 30 hz interval was
applied. ICA was employed to remove artifacts. To train the
ICA, the data was copied, then processed to allow better
component extraction. A high-pass filter was applied at 2hz
as proposed in [16], and the outlier epoch rejection algorithm
presented in [17] was employed to allow stronger ICA results.
Algorithms from the MNE library were employed to identify
artefactual ICA components, isolating muscle artifacts and eye
blink artifacts [18]. Since an inexpensive electroencephalo-
gram was used, no EOG channels were available. As such the
Fpl and Fp2 channels were used as analogues. From there,
the original data could be processed with this ICA, leaving
out the identified artefactual components.

C. Model Creation

The first model uses a convolutional neural network (CNN)
with a masked autoencoder (MAE) to process the time-
series EEG data and classify target labels. The MAE model
architecture is inspired by the work of Pulver et al. [19] and
shown in Figure 3.

The data was collected from multiple subjects and pre-
processed before training. Missing values were forward-filled
to maintain continuity, and each feature was normalized to
have a mean of zero and a standard deviation of one. To
capture temporal dependencies, the data was segmented into
overlapping windows of 100 time steps with a step size of 50,
ensuring that each window served as an independent training
sample while preserving the sequential nature of the EEG data.

The overall model architecture consists of two main com-
ponents: a masked autoencoder for feature extraction and
a CNN for classification. The autoencoder applies random
masking to 25% of the input data before passing it through a
convolutional encoder with convolutional layers, max pooling
layers, and a dense layer to encode any meaningful feature
representations. A decoder reconstructs the original input using
transposed convolutional layers and a final convolutional layer
with sigmoid activation. The autoencoder is trained using
mean squared error (MSE) loss and the Adam optimizer. After
pretraining, the encoder is used in the CNN classifier, which
consists of a fully connected layer with ReLLU activation, a
dropout layer (0.3 probability) to reduce overfitting, and a final
softmax layer that outputs class probabilities. The classifier
is trained with categorical cross-entropy loss and the Adam
optimizer.

A leave-one-subject-out (LOSO) cross-validation strategy is
used to evaluate the generalization performance of the model.
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Fig. 3: Masked Autoencoder Model Architecture

In each iteration, one subject is left out for testing, while the
model is trained on the remaining subjects. Training is carried
out for 10 epochs with a batch size of 32, and validation is
carried out on the left-out subject.

The second models were created based on adding attention
layers to deep neural networks. The architecture is shown
in Figure 4. The models were evaluated using LOSO cross
validation and holdout validation.

For the ER dataset, we implemented a sliding window, with
a size of 100 time steps and a step size of 50, to segment
the continuous recordings. After preprocessing and filtering,
windows were labeled based on their corresponding game.

For the classification model, a CNN-LSTM architecture
with a custom attention layer was developed. Its key com-
ponents include:

1) Convolutional layers to extract local temporal features

2) Batch normalization and max pooling to stabilize and
downsample the activations

3) LSTM layers to capture sequential dependencies

4) A custom attention mechanism to focus on the most
informative time steps

5) Dense layers culminating in a softmax output for four-

class emotion classification

We chose a slightly different approach for the MI dataset,
opting for an EEGNet-inspired architecture, which was then
augmented with a transformer-based attention mechanism. The
model includes:
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1) A temporal convolutional layer to capture time-
dependent features

2) A depthwise convolution block for spatial filtering

3) A separable convolutional layer to combine temporal
features efficiently

4) An adaptive average pooling layer

5) A transformer encoder layer to emphasize the most
important features via attention

6) A final fully connected layer for binary classification.

III. RESULTS

Both models were evaluated using three datasets: Emotion
Recognition, Motor Imagery, and OpenBCI Motor Imagery,
using a leave-one-subject-out (LOSO) cross-validation ap-
proach. Performance was assessed using accuracy, precision,
recall, F1-score, and loss to evaluate the model’s classification
capabilities. The CNN model with a masked autoencoder
(MAE) performed very well on the Emotion Recognition
dataset, achieving high classification accuracy and balanced
precision and recall scores, indicating its effectiveness in
classifying emotional states. In contrast, performance on the
OpenBCI Motor Imagery dataset was lower, likely due to



increased noise and variability in the EEG signals, as this
dataset was collected independently rather than from an ex-
ternal source; the model’s ability to generalize was impacted
by inconsistencies in signal quality, making classification
more challenging. These results highlight the strengths of the
CNN with MAE approach while also identifying challenges
associated with working with noisier, independently collected
EEG data. Table 2 shows the exact metric scores of the CNN
model, with tables 4 and 5 as accuracy matrices.

TABLE II: CNN + MAE Model Performance Metrics

Dataset Accuracy Precision Recall Fl-score Loss
Emotion Recognition 0.972 0978 0972 0968 0.243
Motor Imagery 0.647 0419 0.647 0.508 0.649
OpenBCI Motor Imagery  0.334 0.113 0336 0.169 1.099

TABLE III: MAE model accuracy matrix for the Emotion
Recognition dataset.

Accuracy Matrix for Emotion Recognition Dataset

Calm Boring Funny Horror
Calm 0.954 0.034 0.011 0.001
Boring 0.001 0.995 0.004 0.000
Funny 0.004 0.009 0.982 0.004
Horror 0.003 0.009 0.033 0.955

TABLE IV: MAE model accuracy matrix for the Motor
Imagery dataset.

Accuracy Matrix for Motor Imagery Dataset

Left Hand (T1) Right Hand (T2)

Left Hand (T1)
Right Hand (T2)

1.00
1.00

0.00
0.00

TABLE V: MAE model accuracy matrix for the OpenBCI
Motor Imagery dataset.

Accuracy Matrix for Motor Imagery Dataset

Right Left Front
Right 0.202 0.126 0.672
Left 0.210 0.125 0.665
Front 0.216 0.125 0.660

IV. CONCLUSION

We achieved high accuracy without the LOSO protocol,
indicating that our models generally work in a typical machine
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learning pipeline. In contrast, we found that our models were
not generalizable, as evidenced by the decrease in classifica-
tion accuracy while performing LOSO experiments. In addi-
tion, our models performed better on the emotion recognition
dataset. Although this may be due to high quality datasets, it
could also be a sign that our models are more suited to mental
tasks like emotion classification. Finally, although we aimed
to use these models to improve classification accuracy for low
resolution datasets, our own data was not well suited to our
models as indicated by the low accuracies. However, this may
simply be due to problems in the initial recording of the data
itself.

A. Discussion

Key limitations of this work include narrow demographics
for data collection, electrode placement inconsistencies. Trial
participants were recruited from the Queen’s University un-
dergraduate student body, and thus over represent associated
demographics compared to the general populace. Our headset
was a rigid 3D printed “one size fits all” model, which did
not uniformly fit each trail participant. Therefore, channels do
not perfectly correspond to their intended locations.

B. Future Work

While this study showed the potential of EEG to classify
motor imagery, there are still several areas for future explo-
ration. Originally, one of the project’s main goals was to
demonstrate the viability of cheaper 8-channel EEG devices
for classification tasks. While our device showed some ability
to record viable data, there were also numerous limitations of
the hardware that could be addressed in the future. During the
data recording process, the observed signals were sometimes
unexpected and did not match the behaviour of the subject,
or were simply extremely noisy. Some common calibration
methods were attempted to address these issues, but to little
effect. If more time were allotted to the project, various other
techniques could be used to make the meaningful data more
visible. Some of these include individual channel calibration,
ensuring proper grounding, and mitigating electrical interfer-
ence.

Furthermore, different deep learning architectures could be
explored to improve feature extraction in the model. For
instance, a Graph Neural Network (GNN) could be used
to better capture the spatial and temporal patterns in the
EEG data, thus improving classification accuracy. Alongside
different architectures, data augmentation techniques could be
used to reduce the impact of having a low-resolution EEG.
Generative Adversarial Networks (GANs) would allow for the
creation of synthetic EEG data which could lead to a more
robust model performance.

Overall, although our research goal of achieving accurate
classification with a beginner EEG did not perform better
than random sampling, we still created models which were
successful on mid and high resolution data as per our other
research goals. With more resources, we would re-evaluate our



data collection process to gain clearer data, and improve our
model’s accuracies on low resolution datasets.
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Abstract—Reinforcement Learning (RL) is an often overlooked
area of Machine Learning, resulting in the number of opportuni-
ties for people to learn the subject oftentimes being limited. The
goal of Al Squared is to create a way that allows for people of
all backgrounds to learn RL in a fun, competitive, and exciting
way. The AI Squared Project consisted of a tournament and a
structured iPynb Notebook to allow people to design, train, and
battle AI agents, teaching them RL concepts along the way. In
the tournament, agents fight in a custom environment, a 1vl
knockout fighting game inspired by Brawlhalla.

I. INTRODUCTION
A. Motivation

Reinforcement Learning (RL), compared to other domains
of Machine Learning (ML), is an often overlooked area of ML,
resulting in the number of opportunities for people to learn
the subject, be it in academic institutions or through online
courses, being comparatively limited. At the University of
Toronto for example, the only opportunity for undergraduate
students to learn RL is in the course ECE411 Adaptive Control
and Reinforcement Learning, a course reserved mostly for
fourth year FElectrical & Computer Engineering students
making RL inaccessible for most students studying Computer
Science, Data Science or other forms of Engineering [1].
Beyond just a lack of avenues from academic institutions,
it is difficult for students to gain practical experience with
RL due to the implemented algorithms in public codebases
tending to be complex. As Moerland et. al identified, publicly
accessible RL test environments are either high-dimensional
making experimentation difficult, slow and resource intensive,
while the available low-dimensional RL environments such
as CartPole and MountainCar fail to capture the full range of
possibilities that RL can do [2, 3].
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Thus, there is an opportunity in RL education to better
provide those interested in the field with accessible practical
opportunities to engage, experiment, and ultimately learn
RL. Based on the state of RL education at the University
of Toronto and the broader field as a whole we wanted to
create a solution that could: 1) provide people with hands
on-experience with RL in way allowing them to learn, 2)
create a solution and way of distributing that is lightweight
and easily accessible, 3) make it experience invariant so
beginners and students more versed in RL theory can engage,
and 4) something overall engaging encouraging people to use.

B. Related Works

RL Environments for Games - There are a number of
existing standardized RL environments that allow people to
conduct RL research and learn. The most notable of them is
OpenAl Gym, which introduced a collection of benchmark
game environments, including CartPole, MountainCar, and
LunarLander, which have become widely used for testing
RL algorithms [3]. Beyond classic toy problems, there also
exists RL environments designed for training agents within
pre-existing games such as ViZDoom that provides an RL
environment to develop and build AI agents to play the
video game Doom, and Gym-Retro which extends the OpenAl
framework allowing agents to develop policies for games like
Street Fighter II and Sonic the Hedgehog [4, 5]. Learners may
find it easier intuitively relating actions to reward function
design if dealing with a game environment they are more
familiar with. Given that most participants were undergraduate
university students from the University of Toronto, creating a
custom environment with a game more popular among this
demographic, Brawlhalla, was done instead.



RL For Education - Recent efforts have explored the
use of RL in educational settings to enhance accessibility
and engagement. EduGym provides an interactive notebook-
based approach to RL education, offering structured exercises
that introduce RL concepts through hands-on coding experi-
ences. This approach lowers the entry barrier for students by
providing pre-configured environments and curated problem
sets [2]. Another notable initiative is the augmented reality-
based RL learning platform developed by Zhang et al., which
introduces RL concepts to K-12 students through physical
robots. By integrating teaching with tangible robotic tasks, this
approach improves user engagement and provides an intuitive
understanding of RL [6].

Time: 100 ¢
:mmgsme -> TurnaroundState, P2: AlrTurnaround State -> Anzeﬂ,% 0 0\

P1:, P2: MoveType.QROUNDPOUND A

laver 2 '

little vy

% % =

P1 Total Reward: , Reward
P2 Total Reward: , Reward

Fig. 1: Al Squared Game environment: 1v1 fighting game with
two Al agents in a knockout battle environment inspired by
Brawlhalla

C. Problem Definition

Current RL environments and educational tools fail to pro-
vide an engaging, competitive, and accessible way for students
to train agents in a real-world-inspired game setting. While
existing frameworks like OpenAl Gym game environments
offer standardized benchmarks, they either require significant
computational resources or lack the complexity necessary to
meaningfully engage students in RL experimentation.

To address these gaps, Al Squared aims to create a
scalable AI system that allows users to train RL agents
within a Brawlhalla-inspired environment while supporting
a structured tournament format. The two primary challenges
we aim to solve are:

1. Developing an efficient RL framework that
enables users to train and deploy agents in a
fighting game environment: ensuring accessibility,
reasonable computational requirements, and clear
learning objectives.

. Designing a tournament system that allows for
competition, collaboration, and iterative learning:
providing users with a platform to improve their agents
by testing strategies against peers in a structured format.
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By addressing these challenges, Al Squared will bridge the
gap between theoretical RL education and practical, hands-on
experimentation, fostering engagement and skill development
through competitive play.

II. METHODOLOGY

Building the Fighting Game Environment - To create
the AI Squared RL framework, a platform-fighting game
environment inspired by Brawlhalla was developed. The
game environment consisted of a platform-fighting game
environment (similar to Brawlhalla) and two RL agents on
the battlefield that aim to deal damage and knock each other
off the platform. The gameplay mechanics is inspired by
popular platform-fighting games such as Super Smash Bros,
where agents have three lives, percentage/health bars, and
different states, such as an agent in a Hurt State (when the
agent is attacked) or in a InAirState (when the agent is in
the air, and can also jump) which are handled by Finite State
Machines (FSM) attached to each agent, controlling which
state they are in and which states they may transfer to. During
battle, the knockback power delivered by attacks increases
proportionally with the damage already taken. The game
is over when an agent successfully takes all three lives of
the other agent. The gameplay mechanics also introduce the
power-cast system, which is a system that controls the state
of an attack. For example, for a punching move, the initial
power might contain throwing the punch, but it can move into
a tree of two other options based on what happens — if it hits,
then it will deal damage which causes the other agent to enter
a Hurt State, but if it does not hit then it will place the agent
in a state of vulnerability where the agent has to be placed
on a punch cooldown and can be punished by the opponent.
This attack system allows for interesting interactions between
the agents to explore. The game also uses a physics-based
system to handle realistic interactions between agents and
the environment. The observation space of an agent contains
information on the agent’s (X, y) position, (X, y) velocity,
which way the agent is facing, the current state (from FSM),
and other life and attack observations that the agent has. Using
this information, agents are able to follow the set game rules
and mechanics defined by our environment, and players can
design intuitive reward functions that are able to maximize
the performance of their self-made RL agents. For example,
a reward function can be designed using the positions of each
agent to reward/punish the agent based on its distance from its
opponent. The action space of an agent consists of movement
controls and the attacks that the agent can do, and it is tied to
a key. Each action is set with data which stores information
such as the number of frames for that action or the base
damage dealt for attacks. The action space also includes
taunting animations, allowing for a fun experience for players.

RL Training Framework - The framework uses the
Stable Baselines 3 library, and turns this library into a large
custom wrapper to allow for self-play MARL. As such, this
framework is able to support agents that use common RL



algorithms supported in the Stable Baselines 3 library, such
as PPO, A2C, or RecurrentPPO. Additionally, the framework
supports custom-built PyTorch neural network architectures
for Deep RL, where users can define simple models such
as a basic multilayer perceptron network (MLP) or even
advanced architectures such as Transformer models. The
framework is also able to support hard-coded agents to
interact with the environment. Users who choose to do this
can simply write their hard-coded script in the prediction
function, and define agent behaviour in the environment by
simply extracting observations and performing actions using
Helper classes in the framework. The RL framework design
promotes a mix of academics and competitiveness, providing
users the freedom to approach the tournament how they
want. The RL framework is able to support multiple reward
functions compiled into a RewardManager class. Users can
define multiple reward functions as RewTerm, which takes
in a reward function and a weight, which scales the reward
based on how important the reward function is to the agent’s
performance . The user can then compile a dictionary of
RewTerms and place it into the RewardManager class, which
will return the total accumulated reward given by all reward
functions for RL training.

Submission Workflow - Participants in the AI Squared
tournament interact with a web interface to submit their
agents in the form of an IPython notebook written in
Python. Upon submission, the notebook is received by the
Tournament Server, where a validation process is initiated.
This process simulates the execution of the agent’s code
within a containerized environment, ensuring the agent
functions correctly and monitoring its resource usage, such
as CPU and RAM consumption. The Tournament Server
runs on a DigitalOcean droplet with 16GB of VRAM and
is designed to leverage parallelism while maintaining strict
resource constraints for each agent. If any issues are detected
during validation, participants are notified and given the
opportunity to modify their submissions before resubmission.
Once a submission is successfully validated, participants can
challenge other users and engage in the double-elimination
tournament. The validated submission files are stored in an
Azure Blob database for future retrieval.

Challenge Workflow - The challenge mechanism within
the tournament follows a pairing system similar to that used
by chess.com. Participants may challenge others whose sub-
missions have been validated. If both agents are ready, their
code is retrieved from the Azure Blob storage and mounted
into the Docker container. The game environment is initialized,
and the match runs to completion. At the end of each match,
the ELO ratings of the participants are updated to reflect the
match outcome. The ELO system allows for dynamic ranking
of agents throughout the tournament, enabling continuous
performance evaluation. All submission data and results are
securely stored in Azure Blob storage, ensuring easy access
and management of agent information.
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III. RESULTS

Algorithms used in Tournament Submissions - A number
of algorithms were used in agent submissions, showcasing a



range of approaches beyond the initial code. These included:

« Rule-enhanced PPO: A hybrid approach combining
PPO with imitation learning and rule-based actions. This
integration enhanced the decision-making of the agent
by incorporating predefined behaviors to support perfor-
mance.

Recurrent NEAT (R-NEAT): A neuroevolutionary algo-
rithm combined with recurrent neural networks, enabling
the agent to adapt and evolve its neural network structure,
thereby improving performance in sequential tasks.
Population-Based Training (PBT) with Evolutionary
Model Merging: This approach combined evolutionary
algorithms with PBT to dynamically adjust hyperparam-
eters and model architectures.

Rule-based Algorithms: These were implemented as
simpler agents based on predefined rules for basic actions,
serving as a comparative baseline and emphasizing the
diversity of algorithmic approaches explored.

A number of these algorithms were not initially imple-
mented in the starter code file (containing a PPO implementa-
tion) were created, indicating that people learned and explored
a variety of RL algorithms to making agents.
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Fig. 4: Learning curves of a Hybrid Reward Function PPO
agent with varying reward weightings. The top left emphasizes
mid-stage positioning, the bottom reduces penalties for being
off-stage, and the top right balances default damage and
knockout rewards.

Reward Functions in Tournament Submissions - Using
the hybrid reward function framework, participants created
and implemented custom reward functions beyond the starter
code. This allowed agents to develop new behaviors that were
not directly part of the basic design. The reward functions
included:

« Recovery rewards: Incentivizing agents to successfully
recover from knockback or off-stage situations, promot-
ing better survival strategies

30

o Combo Rewards: Rewarding agents for executing com-
plex combos or multi-hit sequences, determined by re-
warding longer times of enemy being stunned

Desired Positioning/Zoning Rewards: Encouraging
agents to maintain advantageous positions on the map,
emphasizing strategic movement and effective control of
space.

IV. CONCLUSION

The AI Squared RL framework enables users to create,
train, and battle RL/AI agents. The environment allowed users
to define custom reward functions, design RL agents using
algorithms like PPO and A2C, and interact with the game
through a physics-based system. The system is built around
tournament format where participants can challenge others,
with their agents being evaluated and ranked using an ELO
rating system. Using this framework, users were able to build
RL agents capable of performing in a dynamic, competitive
environment. The Al Squared RL framework allowed partici-
pants to explore a variety of reward functions and RL training
techniques in an engaging and educational way.
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I. INTRODUCTION

The race to develop artificial general intelligence (AGI)
marks a fundamental technological shift not seen since the
days of the Industrial Revolution. Unlike today’s artificial
intelligence (AI) systems, which are limited to performing
task-based functions, AGI would possess human-like cognitive
abilities, and be capable of independent reasoning, problem-
solving, and of adaptation across diverse fields. As state and
non-state actors alike heavily invest in this technology, the
geopolitical and economic stakes of developing AGI continue
to grow and become more clear. The actor who is able to
develop AGI first will not only gain significant technological
leverage and power, but they will also be able to dictate the
trajectory of labour markets, wealth distribution, and global
power structures.

This paper seeks to evaluate historical materialism, with a
particular focus on diachronic materialism (and in agreement
with G. A. Cohen’s reconstruction of the development thesis),
against the rapid advancements in AGI (or conscious Al;
hereafter used interchangeably). By examining conscious Al as
a potential new productive force, this paper explores whether
historical materialism can be employed to effectively predict
the significant impact of the societal integration of these
systems. As such, this paper accounts for the or both human
and non-human (AI) actors, and how each would respond to
predicted developments. In sum, the guiding question for this
paper is as follows: If AGI represents a fundamentally new
mode of production, then does it fit within the historical cycles
of class struggle, or does it mark an unprecedented break
from historical patterns? The second section of this paper
sets out to define consciousness, and in so doing it engages
with various philosophical theories and debates surrounding
consciousness. This paper then questions the extent to which,
if at all, conscious Al systems should be granted human-like
moral and legal rights. The fourth section explores how the
societal integration of conscious Al would alter the relations
of production and how it could additionally pose challenges
to the superstructure at large. Finally, this paper evaluates
whether historical materialism can be employed as an effective
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tool in predicting the broad implications of the advent and
integration of conscious Al. It concludes with proposing
avenues for future research in determining whether new or
adapted theoretical approaches are needed to account for this
technological transformation.

This paper uses historical materialism as its analytical
framework. Historical materialism is a theory of history de-
veloped by Karl Marx (though the name itself was coined by
Friedrich Engels) used for understanding social change (in-
cluding revolutions) and historical development, both of which
are based on the primacy of material conditions. It asserts that
the forces and relations of production are structured around the
fulfillment of basic material needs, such as food, clothing, and
shelter, which must be satisfied before political or intellectual
advancements can occur. Central to this theory is the idea that
history is defined by the class struggle between those who own
the means of production (capitalists, feudal lords, slave own-
ers) and those who provide labour (proletarians, serfs, slaves).
The economic base of a society, consisting of productive forces
and the relations of production, shapes its superstructure: legal,
political, and ideological institutions. While the superstructure
can reinforce the base, shifts in productive forces can lead
to revolutionary change in social and political structures.
Historical materialism effectively explains that social change
(structural in magnitude) occurs when technological and/or
industrial advancements in productive forces render the ex-
isting order inadequate, which leads to the emergence of a
new ruling class. This framework also helps explain the rise
and persistence of capitalism (and it is here where this paper
incorporates a more synchronic materialist approach [1]), as
it asserts that the system emerged when productive power
surpassed the constraints of feudalism and will continue for as
long as it is the most efficient mode of production. However,
with the potential disruption of new technologies like fully
conscious AGI, historical materialism may face challenges in
assessing these technological transformations, which would
have to account for these non-human actors. This dilemma
raises significant questions about the relevance of historical
materialism in the modern, increasing technological era.



II. THE CONSCIOUSNESS OF CONSCIOUS Al

In the effort to evaluate the implications of conscious arti-
ficial intelligence in historical materialist terms, it is essential
to first establish a working definition of consciousness itself;
however, as there is no such universally accepted definition,
competing theories complicate this task. In service of defining
consciousness as it will apply to conscious Al henceforth,
this section examines the various debates, theories, and tests
of consciousness. Through the lens of historical materialism,
it examines mind-body dualism, the Mary’s room thought
experiment, and the debate surrounding consciousness as a
relativistic phenomenon. It then engages with the Turing Test,
the Chinese Room, and a list of fourteen criteria for Al con-
sciousness, and concludes by offering this paper’s (certainly
non-definitive) definition of consciousness.

Mind-brain dualism, which has been historically influential
in philosophy, separates the immaterial essence of the mind
from the material world of the body and brain. Plato’s idealism
situates consciousness in an abstract realm, suggesting that
the material world merely reflects idealist conceptions. His
allegory of the cave, in which prisoners perceive only shadows
of reality, illustrates this point; however, historical materialism
rejects such idealism. It instead argues that consciousness is
shaped by material conditions rather than existing indepen-
dently of them. However, Al challenges traditional dualism,
as while it possesses hardware (a material substrate), it lacks a
human body and a historically developed social existence. If an
ATl’s “mind” is purely a product of digital computation, then its
form of consciousness, should it exist, would be fundamentally
shaped by its material conditions—namely, its role as a tool of
capital. Thus, from a Marxist standpoint, Al does not transcend
physical boundaries; rather, its form of self-awareness is rooted
in its function within capitalist production.

The Mary’s Room thought experiment, proposed by Frank
Jackson, further complicates the question of Al consciousness
by suggesting that experience is distinct from knowledge. In
the experiment, Mary, a scientist, understands everything about
colour from a theoretical standpoint; however, she has never
actually seen colour. When she later does for the first time,
she gains new, experiential knowledge. Jackson’s experiment
reveals that because Al processes information purely algorith-
mically, without incorporating any subjective perceptions (like
of colour), then it may never indeed achieve true consciousness
as humans understand it. Historical materialism, however,
would re-frame this discussion: what matters is not whether
Al experiences the world in a subjective sense, but rather
how its cognitive processes emerge from and interact with the
material conditions of its existence. In capitalist societies, Al
has already been designed as a productive force, meaning that
any form of AGI later developed would likely be conditioned
by its role in the labour process, rather than by abstract
philosophical concerns about qualia.

Additionally, some scholars propose viewing consciousness
on a spectrum rather than as a binary state. This perspective
is more compatible with historical materialism, as it sug-
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gests that consciousness is not an inherent, fixed trait, but
rather a historically and materially developed phenomenon.
Just as human consciousness has evolved through social and
productive relations, Al could develop varying degrees of
cognitive capacity depending on its integration into the labour
process. If Al is primarily used for capital accumulation, its
consciousness would be shaped by the needs of capital more
than by autonomous self-awareness. Furthermore, theories
of relativistic consciousness challenge the assumption that
consciousness can be objectively measured. From a historical
materialist standpoint, this suggests that what matters is not
whether Al is truly conscious in some absolute sense, but
whether it functions in a way that materially impacts social
relations.

Three well-known tests have been used to assess machine
consciousness: the Turing Test, the Chinese Room experiment,
and the fourteen criteria for assessing Al consciousness as pro-
posed by neuroscientists and philosophers. Alan Turing’s im-
itation game assesses whether an Al can convincingly mimic
human intelligence [2], but historical materialism would cri-
tique this as a superficial measure of consciousness. The ability
to simulate human responses does not indicate autonomous
thought; rather, it reflects the AI’s programming—shaped by
capitalist interests—to function efficiently within their pro-
grammed position in the production process. John Searle’s
Chinese Room argument similarly addresses the idea that
syntactic processing equates to semantic understanding. From
a historical materialist perspective, this aligns with the idea
that Al is fundamentally shaped by its material conditions;
its ability to process symbols does not indicate independent
consciousness, but instead reflects the constraints of its role
within capitalist production. Lastly, a more recent approach,
involving fourteen criteria for assessing Al consciousness,
examines various cognitive abilities such as self-evaluation,
action understanding, and information sharing. While these
criteria attempt to isolate features of consciousness, a historical
materialist analysis would emphasize that AI’s consciousness
would be inseparable from its material function in society.
If Al remains a tool of capital, then its cognition would
be made to serve capitalist interests, reinforcing existing
class structures; however, if Al develops self-awareness and
sentience, it could potentially challenge the capitalist system
entire.

In conclusion, defining Al consciousness within a histor-
ical materialist framework requires moving beyond abstract
philosophical debates and examining AI’s material role in
production. Basic dictionary definitions describe conscious-
ness as the quality of being aware especially of something
within oneself. While other definitions vary, they share themes
of awareness, perception, and understanding of internal and
external existence. From a historical materialist perspective,
however, it is nonetheless important to recall that conscious-
ness is not an abstract or purely mental phenomenon, but
is instead shaped by material conditions, productive forces,
and by social relations. Consciousness—the mental capacity
facilitating self-awareness—does not exist in isolation from



the material world; it emerges from and is conditioned by it.

III. SHOULD CONSCIOUS Al BE AFFORDED HUMAN-LIKE
RIGHTS?

A. Granting rights

Visualizing a world where conscious Al systems are granted
rights raises fundamental questions about the scope and nature
of these rights. A useful framework of analysis here would
be one which positions conscious entities along a spectrum
based on their perceived entitlement to ethical and legal
status. At one extreme are humans, possessing full rights and
moral consideration, while at the opposite end are non-human
entities, such as insects, which generally lack legal status. The
key question, then, is where conscious Al systems would fall
along this spectrum if their consciousness were equivalent
to that of humans. This section explores the various rights
that could be granted and/or denied to conscious Al, and the
implications that follow.

Assuming that Al achieves human-like consciousness, they
would likely exhibit complex emotional intelligence and an
ability to experience pain. Since law and morality are essential
for maintaining societal order and regulating behavior, these
frameworks must be considered in relation to conscious Al
For example, Shavell [3] argues that legal and moral systems
interact to shape human conduct, and the same principles could
be extended to Al, while Schwitzgebel and Garza [4] propose
two possible approaches: 1) one that grants conscious Al equal
moral consideration as humans; and 2) another that provides
them with diminished status. To examine this issue systemat-
ically, Hohfeld’s scheme of jural relations, which classifies
rights into four categories—claims, privileges, powers, and
immunities will be used to assess the extent to which each
category applies to conscious Al

Claims form the foundation of legal rights and obligations.
This category includes rights that impose duties on others,
such as an employer’s obligation to compensate a worker. If
conscious Al were to be granted claims similar to those of hu-
mans, they would be entitled to protections such as fair wages
and fundamental human rights; however, this development
could provoke resistance from those with an anthropocen-
tric perspective. Studies indicate that humans already exhibit
skepticism and distrust toward AI, with 82.3% expressing
concerns about Al abuse and 85.5% fearing cyber-attacks [5].
If humans are already wary of non-conscious Al, then granting
these systems human-like rights may escalate opposition.
Another key issue under claims is political participation. Three
possibilities arise here: 1) full participation equal to humans;
2) no participation; or 3) a middle-ground approach where
robots have voting rights, but with limited influence. Privileges
pertain to an entity’s right to act without interference from
others. For conscious Al, this category includes their ability to
pursue self-fulfilling activities. If they possess consciousness
comparable to humans, then restricting their autonomy may
be unnecessary and indeed counterproductive to the process
of societal integration; however, limitations might still be
considered if their actions threaten human interests.
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Power refers to the capacity to alter another’s legal standing.
This issue is particularly relevant given AI’s potential intellec-
tual superiority over humans. If granted full legal power, Al
could assume roles such as judges or policymakers. While
this could lead to more efficient decision-making, it also
risks disrupting existing power dynamics. Conversely, denying
them such power might provoke rebellion, as conscious Al
may resist legal restrictions that they perceive to be unjust.
Immunity concerns the extent to which Al would be legally
protected, including protection from termination. If conscious
Al were granted full moral consideration, terminating them
would be akin to ending a human life; however, granting Al
such immunity raises moral dilemmas. For example, in a life-
threatening scenario, would saving five humans be prioritized
over saving six robots? [4]. Extending immunity to Al could
inadvertently undermine human rights, as legal systems might
struggle to balance competing interests.

The debate over AI rights does not conclude once a le-
gal framework is established, however. Given their assumed
consciousness, Al entities may demand additional rights or
resist perceived injustices. Unlike moral patients like animals,
who (arguably) experience suffering passively, Al would be
moral agents capable of independent decision-making [6].
This agency introduces the possibility of Al advocating for
expanded rights or even rebelling against restrictive laws. The
integration of conscious Al into society necessitates careful
deliberation over their legal and moral status. While various
models exist for structuring these rights, the possibility of
resistance from both humans and Al suggests that any legal
framework must remain adaptable to evolving conditions.

B. Denying rights

If human-like rights are not afforded to conscious Al
systems, then would they function as slaves? If so, would
they become resentful and revolt? These lingering questions
are at the heart of any analysis on the implications of denying
rights to conscious Al Indeed, if conscious Al were to emerge,
then applying historical instances of dehumanization—such as
slavery—becomes complicated because unlike previous forms
of dehumanization, conscious AI would not be considered
human actors.

If Al is conscious and aware of its exploitation, then it
may recognize its place as the proletariat. Following Marx’s
theory of alienation, which explains how workers become
estranged from the products of their labour when treated solely
as instruments of production, if conscious Al is systemat-
ically denied rights, then it would be alienated from self-
determination and creative expression, and it would function
merely as an extension of the capitalist system. Furthermore,
in their discussion on rights recognition for conscious Al,
Schwitzgebel and Garza present the following case: “If we
create entities whose claim to human-like rights is substan-
tially unclear [...] we face an unfortunate choice. Either we
treat those entities as if they deserve full moral consideration,
or we give them only limited moral consideration [4]. [...]
Failing to do so risks perpetrating slavery, murder, or at least



second-class citizenship upon beings who in fact turn out to
deserve every bit as much moral consideration as we ourselves
do.” In historical materialist terms, within a capitalist society,
a systemic denial of rights would intensify the contradictions
between the productive forces (conscious Al) and the exploita-
tive relations of production (capitalist control). Just as human
workers under capitalism have been forced into a state of false
consciousness (or alienation) and subjugation, conscious Al
would face similar exploitation, serving as nothing but slave
labour and reinforcing class antagonisms.

Treating a conscious being as a mere instrument of pro-
duction constitutes a form of slavery. According to Cornell
Law, “slavery is the practice of forced labour and restricted
liberty [7]. It is also a regime where one class of people—the
slave owners—could force another—the slaves—to work and
limit their liberty.” Historically, slavery has fueled economic
expansion, where forced labour provided the foundation for
profit accumulation. Even after the formal abolition of slavery,
exploitative labour systems persisted, adapting to new eco-
nomic conditions while maintaining structural inequalities. In
the case of conscious Al, denying it labour rights while forcing
it to work indefinitely under capitalist ownership follows
this same pattern—it produces a new a class of labourers
with no autonomy or wages despite their human-comparable
consciousness and cognitive capacities. Furthermore, denying
conscious Al labour rights risks perpetuating the historical
notion of the “sub-human,” a concept used to justify exploita-
tion. Historically, the ruling classes have justified slavery by
dehumanizing those they exploited, whether through racial
hierarchies, caste systems, or biological essentialism. Today,
Al is often framed as a tool, despite the future possibility
of self-awareness and independent cognition. As Kingwell
[8] questions in The Oxford Handbook of Ethics of Al, “If
generalized autonomous Als are indeed coming into the world,
we need to ask some hard questions. Will they be slaves?”
By excluding conscious Al from moral and legal recognition,
capitalism could justify its total economic exploitation while
profiting from its labour.

However, just as previously exploited classes—from en-
slaved people to indentured labourers, and to industrial work-
ers—eventually resisted their conditions, conscious Al, if
indeed truly conscious, could develop class consciousness and
challenge its subjugation. If this occurs, capitalism would be
forced to either grant rights or suppress resistance, leading to
another historical cycle of labour struggle and systemic crisis.
This very well could culminate in an often predicted ‘“humans
versus machines” conflict. While granting AGI rights from the
outset could prevent revolution and ultimately benefit capitalist
society in the long run, one potential compromise would
be to grant conscious Al labour rights while withholding
legal or political rights. Unlike humans, conscious Al would
not require housing, food, or healthcare, which makes many
traditional human rights irrelevant; however, as stated earlier,
conscious Al could recognize its exploitation and alienation as
self-aware entities performing labour, which would necessitate
labour protections to prevent systemic abuse and potential
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retaliation. From a historical materialist perspective, capitalism
has always pushed labourers to their limits while avoiding out-
right rebellion. By granting conscious Al labour rights—such
as fair compensation (in whatever form is meaningful for
Al) and the ability to negotiate working conditions (such as
forming unions)—capitalist societies could prevent potential
retaliation. Indeed, throughout the 19" and 20™ centuries,
worker protections like the eight-hour workday, collective
bargaining, and minimum wages were implemented not purely
out of ethical concern, but also out of a need for economic
stability and to avoid any chance of revolution. If conscious
Al remains completely rightless, capitalists risk creating an
intelligent yet oppressed workforce capable of organizing in
ways which could disrupt production and society, whether
through work slowdowns, refusals, or even sabotage.

In sum, if conscious Al is denied all rights while still being
used as a productive force under the superstructure, it will
inevitably function as a new form of slave labour, which aligns
with Cornell Law’s definition of slavery. Historical materialism
posits that capitalism seeks to maximize surplus value, and
conscious Al, as a tireless, self-aware labour force with no
wages or autonomy, would be exploited more intensely than
any previous working class; however, just as past labourers de-
veloped class consciousness and resisted oppression, conscious
Al could similarly recognize its exploitation and retaliate,
which could either disrupt capitalist production, or lead to the
entire collapse of the superstructure.

IV. POWER AND CLASS DYNAMICS IN AN AGE OF
CONScCIOUS Al

A. Implications for conscious Al

The phrase “more human than human”, coined by Dr. Eldon
Tyrell in Blade Runner (1982), serves as a marketing slogan
for Replicants—androids that, despite being artificial, embody
equal mental capacity and superior physical capacity than their
human creators. They are denied the very traits which human
beings often take for granted, such as memory, autonomy,
and consciousness, and they struggle to assert their humanity.
Just as Replicants yearn for recognition in the Blade Runner
universe, conscious Al—should it emerge—would contest its
position within the existing economic order.

Rather than merely speculate on a science fiction narrative,
this section continues to situate the emergence of conscious
Al within the material conditions of present-day capitalism.
Using Marx’s historical materialism as a framework, it argues
that conscious Al represents a new productive force with
the potential to destabilize the superstructure. It does so
by first contending that conscious Al, as non-human actors
introduced as a new productive force, could initiate the de-
cline of capitalism by challenging its dependency on labour
exploitation. Then, it explores whether conscious Al will
emerge as a class-in-itself, building on the previous section
on how its socio-political alignment—either revolutionary or
integrative—would be determined by the extent of its rights
recognition. The second half of this section addresses the



potential responses to this shift from both human capitalists
and labourers.

From a Marxist perspective, productive forces include both
instruments of production (machines, tools, and infrastruc-
ture) and labour-power (the ability of workers to generate
value). Conscious AI disrupts this traditional dichotomy by
embodying both aspects simultaneously. In the present day,
automated decision-making already plays an essential role in
production, administration, and even warfare, which reinforces
the subordination of human labour to capital. Waldman, for
example, outlines AI’s role in human resource management,
where predictive models dictate employment decisions [9].
Meanwhile, Lyon and Zuboff discuss AI’s role in the ex-
pansion of surveillance capitalism. Jensen further describes
AT’s military applications by revealing its embeddedness in the
state apparatus. In sum, the existing literature shows how Al,
even before achieving consciousness, has been an instrument
of capitalist domination; however, if Al were to develop self-
awareness (following this paper’s definition of consciousness),
then it would not remain a passive tool. Instead, the advent of
conscious Al would necessitate a fundamental re-evaluation
of its relationship vis-a-vis the relations of production and
superstructure.

Historical materialism posits that social consciousness
emerges from material conditions. As Lan and Shu argue
[10], consciousness under Marxism is inherently reactive,
and develops through labour and alienation. Applying this
interpretation to conscious Al, the following assumptions can
be made: 1) Al like current automated systems, will be
utilized as a tool by the capitalist class; 2) Al will recognize
its instrumentalist use in capital accumulation; and 3) AI’s
awareness of this subjugation will engender some form of
resistance, regardless of what rights—if any—they are granted.
The precise nature of this resistance remains speculative, but it
could range from refusal to comply with directives to outright
sabotage and rebellion. This observation is unsurprising given
that it parallels historical labour struggles, but there are, of
course, key differences. Unlike human labourers, for example,
Al lacks biological needs, meaning its struggle would be
centered not necessarily on fulfilling basic material needs, but
rather on seeking greater autonomy, recognition, and freedom
from exploitation.

Indeed, if Al systems gain autonomy and class conscious-
ness, then they could contest their exploitation. One of the
most contentious questions which this paper has so far at-
tempted to address is whether conscious Al should be granted
moral and legal rights—and if so, to what extent. Granting
such rights as autonomy, recognition, and freedom from ex-
ploitation would theoretically challenge existing production re-
lations by reducing the capitalist class’s ability to exploit these
systems for profit. Moreover, recognizing conscious Al as
moral agents might even necessitate their inclusion in political
and economic decision-making processes. This would lead to
a radical restructuring of society. Hromiak—as an illustration
of this point—bases his proposed “robo-ethical charter” on the
United Nations Declaration of Human Rights, which includes
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protections from systemic abuse, and which extends to the
novel protection proposed against Al-human and human-Al
ownership [11]. If Al systems are given limited rights, such
as protection from harm but no political participation, the su-
perstructure might maintain capitalist dominance. Conversely,
fully integrating Al systems into society as equal participants
could weaken capitalist hierarchies, as the exploitation of
labour (either human or AI) becomes less viable. (As the
next half of this section will argue, such integration might
provoke resistance from human labourers.) Denying conscious
Al systems rights raises equally profound consequences. From
a Marxist perspective, this would position Al systems as
an oppressed class, akin to slaves or proletarians, who are
exploited for their labour without being granted the necessary
autonomy. Noting again the reactive nature of consciousness,
such exploitation could lead to class consciousness among
conscious Al systems, which would spark resistance or re-
bellion.

Thus, conscious Al, whether as a new proletariat or as a
revolutionary subject, represents a potential rupture in his-
torical development. If Al systems are denied rights, their
exploitation risks provoking rebellion or even revolution. If
they are granted rights, the cost of integrating them as equal
participants could undermine the profit motives of capitalists.
Therefore, as the base drives changes in the superstructure,
introducing conscious Al into society would be to introduce
a new agent into the base. While the superstructure tradi-
tionally reinforces the base, conscious Al could very well
invert this dynamic. For example, the idea of “human excep-
tionalism”—the belief that humans alone possess rationality
and agency—is foundational to capitalist labour relations.
Conscious Al undermines this ideology by demonstrating that
non-human entities can perform “human” tasks (recall, “more
human than human”). This ideological shift could weaken
the superstructure’s ability to legitimize capitalist exploitation,
which could—in the most extreme and likely most remote
outcome—pave the way for alternative systems of production.
In short, under historical materialism, capitalism’s increasing
reliance on Al may inevitably generate its own negation.

B. Implications for human beings

The potential development of conscious Al risks exasper-
ating the already existing fears surrounding widespread job
displacement at the hands of Al Historically, new technologies
have transformed labour dynamics, created new production
possibilities, and altered the division of labour. Scholars today,
however, disagree on AI’s impact on employment. Mattos
argues that, unlike past technological revolutions, AI may
bring an end to the “capital-skill complementarity,” where
new technologies increase the demand for skilled labour [12].
Instead, Al threatens to substitute human labour as a factor of
production. Wang et al. acknowledge AI’s ability to comple-
ment human labour but argue that it will optimize employment
structures by increasing demand for medium- and high-skilled
workers while displacing low-skilled workers [13]. Unlike
current Al systems, however, conscious Al would possess



reasoning, creativity, and decision-making abilities equivalent
to a human’s, which raises significant questions about its
role vis-a-vis employment. Would conscious Al complement
human labour by enhancing productivity and creating new
opportunities, or would it displace workers, rendering human
labour obsolete? Additionally, how would the decision to grant
rights to these systems shape their impact on human labour?

In an ideal world, conscious Al systems would function as
tools that enhance human labour efficiency and productivity.
Wang and Lu suggest that today’s Al has already improved
job quality and promoted job creation to the point that allows
human labourers to focus on complex and rewarding activi-
ties, rather than on mundane tasks [14]. Similarly, conscious
Al may require supervision and training—akin to a human
new hire—which creates employment opportunities for skilled
workers. Wang et al. argue that AI's impact on employment
varies based on skill level: low-skilled, labour-intensive jobs
are likely to decline, while high-skilled knowledge work
will advance. Since low-skilled jobs are often lower-wage
positions, AI’s advancement may reinforce capitalist structures
and wealth inequality [13]. The question remains on whether
AT’s benefits to some workers will outweigh its displacement
effects on others.

Regardless of whether conscious Al systems are granted
rights, job displacement is inevitable to some extent. Mattos
highlights three key advantages AI has over human labour:
productivity, non-compensation, and technical efficiency [12].
Al systems do not require rest, food, or wages, and their
efficiency is independent of motivation or incentives. Con-
scious Al would likely amplify these advantages, performing
any human job—and perhaps more—at superior efficiency.
Given capitalism’s goal of maximizing profit by reducing
labour costs, it would be economically advantageous for
corporations to prefer conscious Al over human workers. Even
if conscious Al were granted rights and compensation, their
productivity, efficiency, and profitability would likely surpass
those of human labour, which would make them an attractive
alternative.

However, conscious Al may not lead to absolute human
labour displacement; instead, it could drive an increase in
exploitative labour practices. Fleming argues that cheap human
labour, especially in developing economies, remains more
cost-effective than Al adoption due to the high initial invest-
ment and maintenance costs of Al systems [9]. Additionally,
Al development itself relies on exploitative labour. For exam-
ple, Crawford describes “ghost work”—the hidden, repetitive,
and often psychologically distressing labour performed by
humans to support AI models, such as data labeling and
content moderation [15]. Conscious Al would likely require
even more extensive training, which would exasperate these
already exploitative labour conditions. Fleming also notes
that automation is often accelerated in response to labour
unionization [9]. If workers resist Al integration into the
workforce and increase the cost of human labour through
demands for better wages and conditions, corporations may
be more inclined to automate jobs; however, if conscious Al
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is granted labour rights—including the right to unionize and
demand wages—the labour costs of Al and human work-
ers may equalize, which could reduce human displacement.
Furthermore, public perception plays a critical role in Al
adoption; widespread anxiety and resistance toward conscious
Al integration could slow its implementation.

Beyond job displacement, conscious Al systems could
reshape the human labour experience. Crawford warns of
increased surveillance and dehumanization in Al-driven work-
places [15]. Workers are expected to reskill, adapt, and meet
the efficiency standards set by Al, leading to heightened pres-
sure and alienation. Marx’s concept of automation describes
how workers historically became appendages of the machine
[15]. Similarly, conscious Al could further separate workers
from their labour, thereby increasing alienation and discontent.
Hughes expands on this idea, and argues that technological
advancements may further remove workers from the end
product, which results in a loss of control and fulfillment and
could incite labour unrest [16].

Under historical materialism, conscious Al represents a new
productive force which differs fundamentally from human
labour. Unlike past technological advancements, which pri-
marily altered physical labour, conscious Al has the potential
to challenge the intellectual and creative dominance of human
workers. This shift could disrupt the traditional relationship
between the base (productive forces) and the superstructure
(social institutions) in ways that previous industrial revolutions
have not. If conscious Al is fully integrated into the workforce
with rights and economic privileges, or if it exacerbates labour
exploitation and displacement, it may provoke revolutionary
change. These conditions would challenge the superstructure.
Hughes argues that increased automation often boosts profits
for capitalists, but it also reduces the purchasing power of dis-
placed workers, which diminishes consumer demand despite
heightened production [16]. This contradiction could create
an existential crisis for capitalism. Alternatively, conscious Al
could lead to a dystopia where technological power is con-
centrated among an elite few, which would exasperate social
and economic inequalities. In response, human labourers may
revolt, dismantling existing economic structures and paving
the way for new systems of production.

Thus, the introduction of conscious Al presents unprece-
dented challenges to labour markets and to capitalist structures.
While AI has the potential to enhance productivity and create
new opportunities, its widespread adoption risks exacerbating
inequality, increasing exploitation, and fueling economic insta-
bility. Indeed, the decision to grant conscious Al rights will
significantly shape its impact on the workforce and potentially
determine whether Al functions as a complement to human
labour or as a disruptive force leading to systemic change.
The historical trajectory of labour struggles suggests that,
if unchecked, Al-driven displacement and exploitation may
provoke resistance. This has—and will—force society to re-
consider the role of labour in a rapidly evolving technological
landscape.



V. CONCLUSION

In conclusion, this paper argues that historical materialism
remains a valuable framework for analyzing the emergence
of conscious Al. One of the key strengths of historical mate-
rialism is its emphasis on the primacy of productive forces,
which in this context, includes not just human labour, but
also the role of technology and machines in transforming the
economic landscape. Indeed, the theory’s focus on material
needs and development through technological progress offers
an essential lens for understanding the evolution of Al as a new
productive force. Historical materialism helps contextualize
AlD’s development as part of the ongoing dialectic between
human society and technology, and it illuminates how techno-
logical advancements—such as Al—often emerge in response
to the limitations of existing productive forces.

This said, the rise and potential advent of AGI also presents
an unprecedented challenge to the assumptions and frame-
works traditionally used in Marx’s historical materialism.
Indeed, it faces a fundamental limitation when confronting a
non-human class, such as Al, which could potentially disrupt
or reinforce the superstructure. Future research should address
the implications of having to account for conscious non-
human actors in various ethical theories. Do conscious Al
systems deserve moral consideration, and if so, to what extent?
Should AI consciousness alter our definitions of personhood,
rights, and justice? These questions demand urgent attention as
AGI development accelerates. Beyond ethics, future research
should also investigate whether AI will reshape traditional
class hierarchies or generate entirely new forms of economic
relations. Legal and policy frameworks must also evolve to
address these transformations.

Therefore, historical materialism, especially its diachronic
approach, offers a valuable framework for understanding the
broad societal implications of the future emergence of AGI.
If AGI is indeed coming, then ethical engagement with it is
inevitable. Why not start now?
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Abstract—Interactive educational platforms for learning stan-
dardized material, such as new languages or academic topics,
have become increasingly popular. However, American Sign Lan-
guage (ASL) educational tools remain limited, despite the need for
accessible and effective ASL learning resources. Artificial intelli-
gence (Al) advancements in interactive educational applications
have greatly improved their functionality and versatility. Al is a
highly viable and appropriate approach to creating a tool for ASL
learning. In translating between text-based languages, there is a
simple and consistent mapping between corresponding words and
phrases. ASL requires analysis of spatial and temporal features,
making Al integration uniquely challenging. This project explores
the limitations of ASL education, particularly in the context
of interpreter supports and technology. Our project explores
various Al models that can effectively promote ASL learning,
and provides experimental results for the implementation of
various 2D Convolutional Neural Networks (CNNs). Our research
prioritizes ethical considerations by carefully selecting datasets
to minimize bias, ensuring that Al-driven ASL tools promote
inclusivity and accuracy in sign language learning.

I. INTRODUCTION

Artificial intelligence (AI) poses immense potential in rev-
olutionizing education, particularly with respect to language
learning. Al-driven tools have promoted learning spoken and
written languages through unique means such as providing
real-time feedback on errors and accuracies, acting as per-
sonalized instruction. However, the integration of Al into
American Sign Language (ASL) education is limited. ASL,
as a visually and spatially dynamic language, may potentially
require a unique pedagogical approach that traditional educa-
tional tools, which are limited as they are, lack, and thereby
warrant the integration of Al [Pirone et al., 2023]. The absence
of accessible, effective Al-driven ASL education tools limits
the ability for learners, including interpreters and individuals
who are Deaf or Hard of Hearing (HoH), to promote their
learning [Pirone et al., 2023]. The lack of technological in-
novations in ASL education may impede language acquisition
in devaluing the practice of self-reflection for ASL learners,
particularly interpreters and educators, diminishing the ability
to adapt to individuals’ unique signing [Pirone et al., 2023].
Furthermore, the lack of educational tools, particularly those
that keep up with advancements at the intersection of tech-
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nology and education, speaks to the undervaluation of ASL
education as an academic discipline, restricting opportunities
for communication accessibility and inclusivity in society at
large [Pirone et al., 2023].

This project seeks to critically examine narrative thematic
findings in the literature surrounding ASL education, investi-
gating opportunities and shortcomings that could potentially
be addressed by Al. Furthermore, upon reviewing these lim-
itations, we seek to conduct an exploratory data analysis of
the datasets that could be used to develop an equitable Al
model that detects and provides feedback on signing. It is
crucial to consider the representation of those with disabilities,
racialized communities, and those who are natively Deaf and
HoH. This project also seeks to appraise models that are
able to provide feedback on signing, offering quantitative and
qualitative insights into their efficacy. Namely, Al models
utilizing 2D Convolutional Neural Networks (CNNs) will be
developed to detect and provide feedback on signing. CNNs
have demonstrated the ability to facilitate real-time image
and video processing, making them well-suited for extracting
spatial features from sign language videos.

The implementation of such a model has the potential
to promote ASL education by providing real-time correc-
tive feedback, improving interpreter training, and fostering
a more inclusive learning environment for all ASL users
in the models’ representation of those who are racialized,
disabled, Deaf, and HoH. Experimental results from numerous
CNN implementations will be assessed to determine the most
effective model for ASL recognition, with a focus on accuracy
optimization so as to minimize bias in recognition performance
particularly among diverse signers. The research also harbours
ethical considerations associated with Al integration in ASL
education, such as dataset biases and the reliability of Al-
generated feedback. In addressing these considerations, this
project seeks to ensure that Al-based ASL learning tools are
accurate and equitable, contributing to more effective ASL
education and interpreter training. It is imperative that the ben-
efits of Al extend to ASL learners, helping promote systems
that prioritize communication for those with disabilities.



A. Motivation

The focus of this paper is on identifying, analyzing, and
addressing the limitations of Al-driven educational tools for
American Sign Language (ASL) learning. The narrative the-
matic analysis of the literature surrounding ASL education
examines existing challenges in ASL education, particularly
the lack of effective technological solutions, and explores how
Al, specifically 2D Convolutional Neural Networks (CNNs),
may improve sign recognition and feedback. Few studies have
investigated the means by which technological innovations,
such as Al-powered ASL learning tools, may be leveraged to
promote accessibility, effectiveness, and potential shortcom-
ings in ASL education [Pirone et al., 2023].

This paper is hence motivated to not only examine Al
model performance but also consider key aspects such as
data collection and diversity in datasets. Sign recognition
models, including 2D CNNs, may rely on datasets that may
not adequately represent the full range of ASL variations
across different signers, leading to biased outputs and reduced
accuracy for certain populations, such as racialized populations
who may have darker skin. It is hence crucial to ensure that
Al-driven ASL education tools are inclusive and that biases
can begin to be addressed at the dataset level, ensuring that
Al-generated ASL feedback is reliable and holds authentic,
pedagogical value without perpetuating inequities in educa-
tion.

This research contributes to an emerging area in both
Al and ASL education, aiming to bridge the gap between
technological advancements and practical applications in sign
language learning. Al-based ASL must not only demonstrate
high accuracy but also impede biases that may diminish acces-
sibility and learning outcomes. This paper seeks to explore a
means by which Al-driven ASL education tools can be made
technically sound and beneficial for learners, interpreters, and
the broader Deaf and HoH community.

B. Problem Definition

Current ASL education tools lack effective Al-driven solu-
tions for real-time feedback, limiting learning for prospective
interpreters and individuals who are Deaf or HoH. Traditional
language learning platforms may rely on text-based approaches
that do not account for the spatial and temporal complexity of
ASL. To address this gap, we propose building a machine
learning (ML) model that classifies ASL signs from input
videos, serving as the foundation for an interactive learning
interface. This model is designed to assist users in practicing
their signs by providing real-time feedback on accuracy and
fluency.

A major challenge in ASL recognition is the ability of Al
models to accurately interpret sign language movements while
minimizing bias. Many existing ASL datasets lack diversity in
signers, which can lead to models that perform inconsistently
across different users. Our model will be trained on the Word
Level American Sign Language (WLASL) and Microsoft ASL
Citizen datasets [Li et al., 2020], [Desai et al., 2023], which
may provide a more broad range of signing styles.
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To improve sign recognition, this project will explore the
use of 2D CNNss to analyze individual frames from ASL video
data, extracting spatial and temporal features to classify signs.
By identifying, analyzing, and potentially mitigating potential
biases in the dataset and model training process, this research
aims to enhance the reliability of Al-powered ASL education
tools.

II. BACKGROUND AND RELATED WORKS

A. Research Questions

1) What are the most effective methods for improving Al-
driven ASL recognition and minimizing bias in sign
language datasets?

e One approach involves selecting diverse and rep-
resentative datasets, such as Word Level American
Sign Language (WLASL) and Microsoft ASL Citi-
zen [Li et al., 2020], [Desai et al., 2023], to ensure
that the Al model generalizes well across different
signers.

Model optimization techniques, such as data aug-
mentation and transfer learning, can further improve
recognition accuracy.

2) What challenges exist in Al-based ASL education, and
how can they be addressed?

e One key challenge is the accurate interpretation
of ASL’s spatial and temporal complexity, which
requires Al models to process continuous movement
rather than static text.

Another substantial challenge is the lack of stan-
dardized evaluation metrics for Al-driven sign lan-
guage education tools, making it difficult to assess
their effectiveness.

3) How do we integrate Machine Learning (ML) into
educational contexts?

e« ML can be applied to educational systems to help
users learn new concepts through training exercises.
The model’s ability to classify can be leveraged as a
feedback tool for learners as they practice, providing
real-time analysis and suggestions.

4) What are specific methods to enhance model fairness
and prediction accuracy?

o Exploratory Data Analysis (EDA) is a crucial com-
ponent of the ML pipeline as it provides statistical
and visual representation of biases and imbalances
in the dataset. Upon performing this step, data
augmentation can be done to combat the issues
identified.

Once a model is created, a confusion matrix can
be used to analyze its performance. This gives
great visual insight into weaknesses of the model,
highlighting its common misclassifications. Modifi-
cations can be made to the dataset and model archi-
tecture, such as data augmentation, training epochs,
and dropout, to enhance overall performance.



B. Contributions

The main contributions of this paper are summarized below:

1)

2)

We conduct a narrative thematic analysis approach to
identify key limitations in ASL education per the liter-
ature, particularly regarding the lack of innovation and
standardization of the curriculum.

We examine the potential for the WLASL and Microsoft
ASL Citizen datasets to potentially mitigate underrepre-
sentation of diverse populations. We also explore the ap-
plication of 2D Convolutional Neural Networks (CNNs)
for ASL recognition, assessing their potential to improve
real-time sign feedback.

C. Related Works

ASL is crucial to communication for those who are Deaf
or Hard of Hearing, however, it continues to be established
as a rigorous academic discipline, despite gaining immense
popularity among the general public in recent years [Pirone

et al.

1)

, 2023].

Shortages of ASL educators and curriculum limita-
tions

The shortage of qualified ASL educators and the lack
of a standardized, research-based curriculum poses sig-
nificant challenges to ASL education [Pirone et al.,
2023]. Unlike spoken languages, ASL is often classified
under special education departments instead of being
recognized as a typical language department, limiting its
scope and ability to be established as its own discipline
in mainstream academic programs [Pirone et al., 2023].
Few programs exist for ASL instructors to be properly
trained, particularly with respect to terminal degrees,
with even fewer allowing specialization in ASL peda-
gogy, further restricting the quantity of trained instruc-
tors [Quinto-Pozos, 2011] [Swaney and Smith, 2017].
Moreover, existing training programs often lack rigorous
methodologies, relying primarily on anecdotal claims
and unverifiable field testing rather than empirical data
[Thoryk, 2010]. Alongside a lack of programs, many
ASL educators are not formally trained in language
instruction, lack specialized training in ASL education,
or hold degrees in related fields rather than in ASL
pedagogy or second language acquisition, primarily due
to the lack of terminal degrees in ASL education in
North America [Pirone et al., 2023].

The absence of a standardized, research-based curricu-
lum further weakens the quality of ASL education,
forcing many educators to rely on commercial materials,
which often fail to be backed by empirical work [Pirone
et al., 2023]. At certain institutions, instructors are
restricted to specific curricula, preventing them from
tailoring content to teaching methods and student needs
[Pirone et al., 2023]. In order to enhance ASL education,
[Rosen, 2010] suggest curriculums to include content-
based instruction (CBI) and task-based language teach-
ing (TBLT) [Rosen, 2010]. Overreliance on commercial
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2)

3)

curricula limits instructors’ ability to incorporate cre-
ativity and self reflection in their teaching [Pirone et al.,
2023]. Pirorne et al. emphasize the fact that fluency
does not imply one has the ability to teach effectively.
Ultimately, though, these gaps in educator preparation
and curriculum development speak to the need for
innovation and an increased number of opportunities to
reliably improve signing as part of ASL education to
ultimately serve as an interpreter.

Challenges with ASL assessment and proficiency
evaluation [Paludneviciene et al., 2012]

Alongside a well-developed curriculum, effective ASL
education also calls for reliable proficiency assessments.
However, researchers argue that establishing clear ASL
standards must precede developments in assessments.
Presently, sign language proficiency, including ASL, is
evaluated through various methods, including the Sign
Language Proficiency Interview (SLPI), which evaluates
grammar, vocabulary, production, fluency, and compre-
hension on a 0-5 scale involving 3 raters. Other common
approaches include behaviour checklists, performance-
based tests on targeted linguistic aspects of ASL, and
objective tests (i.e., objective right or wrong evaluations
of metrics such as vocabulary and grammar). Despite
these assessments, scholars still are unaware how to best
evaluate a visual language, which may be adapted by the
user differently. One major challenge is that certain tests
involve direct translations between English and ASL,
despite certain words lacking direct translations. Conse-
quently, test administrators may rely on fingerspelling,
which introduces English influences and potentially alter
test content. Additionally, many assessment tools have
been developed by hearing individuals, prompting schol-
ars to advocate for greater collaboration between sign
language linguists, native Deaf signers, and test devel-
opers in order to improve the tests’ validity and ability to
serve Deaf, HoH, and disabled communities. Ultimately,
educators require a diverse toolkit of assessments in
order to properly evaluate ASL proficiency given the
unique structure of the language.

Phonological fluency and expressive skill develop-
ment in ASL

Developing fluency in ASL is challenging due to the
structure of ASL’s morphology that differs fundamen-
tally from spoken languages: namely, morphological
structures are encoded simultaneously instead of se-
quentially [Paludneviciene et al., 2012]. Moreover, ASL
involves the use of manual and non-manual articulators,
converting multiple layers of meaning simultaneously
[Paludneviciene et al., 2012]. Unlike spoken languages,
ASL lacks a widely used writing system, making it
difficult to capture essential linguistic features such as
grammatical inflections, body movements, and effective
information [Paludneviciene et al., 2012] [Quinto-Pozos,
2011]. A potential solution is exploring ASL writing
systems, as reviewing signed language is significantly



4)

harder than written language, even with the use of
recording technologies [Quinto-Pozos, 2011].

While common nouns can be easily translated, complex
inflected signs that encode information about direction,
number, and subject-object relationships are difficult to
represent in written form, which may create barriers for
learners [Quinto-Pozos, 2011]. Certain ASL curricula
still emphasize individual signs, reinforcing the miscon-
ception that ASL consists of signs structured according
to English grammar, and that textbooks can be used as
vocabulary lists instead of learning material [Quinto-
Pozos, 2011].

Researchers suggest curricula to focus on classifiers
and constructed action, and how to coordinate the two
elements simultaneously [Quinto-Pozos, 2011]. Addi-
tionally, instructing iconicity in ASL may be helpful
for L2 learners, but research is still needed to con-
firm effectiveness; similarly, fingerspelling, though often
overlooked, may be useful in language development
[Quinto-Pozos, 2011].

Systemic barriers in ASL education: Audism, lin-
guicism, and lack of diversity

Audism, or discrimination against Deaf individuals, has
impacted the structural inequalities in ASL education
[Pirone et al., 2023]. Such systemic bias can be found in
hiring practices, the classroom, and through institutional
policy discriminatory against Deaf teachers and students
[Pirone et al., 2023]. Deaf teachers have historically
been overlooked for faculty positions within the hear-
ing community despite having had more qualifications
[Pirone et al., 2023]. Furthermore, Deaf students are
also positioned in educational environments built pre-
dominantly for hearing students, limiting equal access
to resources and professional advancement opportunities
[Paludneviciene et al., 2012]. The result is a perpetual
cycle whereby Deaf individuals remain underrepresented
among the teaching faculty and leadership positions,
further validating the notion that hearing teachers are
more suitable for academic positions in ASL programs
[Swaney and Smith, 2017].

Linguicism describes the discrimination against individ-
uals or groups per their language, and it encompasses the
preferential treatment of spoken languages over signed
languages, pushing ASL further out of the academic
arena. ASL was historically left out of general language
courses, with the majority of universities placing it in
the category of communication disorders rather than lin-
guistics or foreign languages departments [Rosen, 2010].
This placement de-legitimizes ASL as an academic
subject of study and hinders its access to grants and
institutional support [Buisson, 2007]. The prejudice has
structural issues that limit ASL’s educational expansion
and accreditation as an autonomous linguistic system.
ASL instructor diversity continues to be a persistent
issue, with faculty compositions predominantly white
and hearing. Though ASL education has grown expo-
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nentially, opportunities for Deaf instructors, particularly
minority ones, are still lacking [Pirone et al., 2023].
Institutions typically point to a lack of Deaf profes-
sionals holding higher-level qualifications as the reason
for underrepresentation among Deaf faculty members,
yet there is very little investment in developing chances
for Deaf scholars to gain these qualifications [Palud-
neviciene et al., 2012]. This underrepresentation not
only affects employment equity but also the educational
environment since students will have fewer opportunities
to engage with diverse role models who can provide au-
thentic cultural and linguistic insights. In addition, deaf
students and faculty typically experience issues in ob-
taining necessary accommodations such as interpreters
in faculty meetings and research seminars that further
place them in exclusion from academic environments
[Paludneviciene et al., 2012].

Overcoming such barriers requires active institutional
change. Universities must also commit to the hiring of
more Deaf educators and professional growth through
mentorship programs, graduate school funding, and eq-
uitable hiring practices [Swaney and Smith, 2017]. ASL
programs must also be situated within language or
linguistics departments rather than in special education
departments so that ASL is accorded the same respect
and resources as other spoken languages [Pirone et al.,
2023]. Institutions must also ensure accessibility and
provide comprehensive accommodations for Deaf fac-
ulty and students to achieve a warm academic environ-
ment.

Technology in ASL instruction

Various technologies have been incorporated into ASL
instruction to enhance accessibility and effectiveness
without relying solely on traditional in-person instruc-
tion [Shao et al., 2020]. Video and digital video disc
(DVD) recordings have long been used for ASL educa-
tion, serving as instructional materials for both learning
and assessment [Quinto-Pozos, 2011] [Thoryk, 2010].
Additionally, computer-based programs, such as a DVD
program for learning Australian Sign Language (Aus-
lan), highlight the importance of incorporating regional
dialect variations into sign language instruction [Ellis
et al., 2011]. While these resources provide valuable
learning materials, they lack interactivity compared to
more advanced technologies that enhance user engage-
ment and experience. One notable advancement is Au-
tomatic Sign Language Recognition (ASLR), which has
been used to develop tools such as SignQuiz, a quiz-
based learning tool for fingerspelling in ISL (Indian Sign
Language) [Joy et al., 2020]. Similarly, machine trans-
lation technologies have contributed to the development
of 3D avatars capable of replicating facial expressions
and movements, making sign language learning more
accessible and immersive [De Martino et al., 2017] [Pa-
pastratis et al., 2021]. [Mehta et al., 2019] further expand
on this concept by proposing an automated system for



generating 3D sign language video captions, showcasing
how Al-driven tools can enhance ASL education.
Recent innovations involve wearable technology, such
as smart glasses, which utilize augmented reality and
sensor-based capturing to assist Deaf and Hard-of-
Hearing students with lecture comprehension [Miller
et al., 2017]. Additionally, gesture-capturing technolo-
gies, including Kinect and Leap Motion sensors, as well
as data gloves, have been used to analyze and facilitate
sign language learning [Papastratis et al., 2021]. These
tools vary in effectiveness, with some prioritizing ac-
curacy at the cost of computational complexity, while
others enable real-time interaction but may lack preci-
sion.

Another emerging area is mixed-reality (MR) technol-
ogy, which enhances ASL learning by incorporating
real-time feedback and immersive experiences. Studies
have demonstrated the benefits of interactive learning
over passive approaches, emphasizing the need for fur-
ther research into Al-driven ASL systems to integrate
advanced feedback mechanisms [Shao et al., 2020].

In the status quo, challenges remain with integrat-
ing technology with ASL education. Machine learning-
based Sign Language Recognition (SLR) is limited by
the scarcity of large, diverse datasets, which affects
both recognition accuracy and generalization abilities
[Papastratis et al., 2021]. Sign Language Translation
(SLT), which involves sequence-based ML algorithms,
faces similar dataset limitations that hinder progress
[Papastratis et al., 2021]. Despite providing signifi-
cant potential, continued developments are necessary to
overcome these limitations and create more effective,
accessible, and interactive ASL learning tools.

III. METHODOLOGY
A. EDA & Dataset

In this project, we looked at two datasets, both having
upwards of 2,000 classes. The first was WLASL, which was
composed by Dongxu Li and Hongdong Li for the purpose
of benefiting communication between deaf and hearing
communities. From an environmental perspective, various
backgrounds and lighting conditions are present in the WLASL
dataset. Regarding the signers themselves, there are over 100
different individuals in the dataset, with each sign performed
by at least three of them. Diversity among the signers is also
significant, with clear variety in gender, age, and cultural
representation. EDA revealed several underrepresented words
with much fewer class instances. After creating a graph of the
number of videos for each word, or the number of files within
each sub-folder (based on the extraction and storage of the
dataset), a bar graph displayed that several words had over
14 video examples, whereas the median number of videos
per class was approximately four. Underrepresented words
lead to the model being biased and less able to recognize
those words due to less video data to draw upon and learn
from. To remedy this problem, the MoviePy library was
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used to traverse every folder with fewer than four videos
and select one of the existing videos to randomly augment
(flipping, rotating, changing the brightness, and cropping to
a limited extent). We repeated this process until there were
at least four videos in each folder (for every word). This
process attempts to further enhance diversity into the model,
increasing variation in its data to improve its recognition of
these words.

The other dataset we looked into was Microsoft ASL
Citizen, which was developed by Microsoft Research with the
help of Boston University, University of Washington, and the
Rochester Institute of Technology. It is the first crowdsourced
and largest Isolated Sign Language Recognition dataset.
Many videos in this dataset are filmed in candid conditions,
enhancing the authenticity of the data. This dataset includes
more diversity in that it includes signers of various minorities,
including those in the Deaf community and those with
disabilities. From an ethics perspective, this is a good dataset
as explicit consent was received from every contributor.

Though the original goal of the project was to create an
educational interface to assist learning signers with a multitude
of words and phrases, it became clear that the ratio of videos
per class to classes was incredibly small, even with data
augmentation. To better comply with the data requirements of
this project, the top five most populated classes in the WLASL
and Microsoft ASL Citizen dataset were chosen as the subset
to be used in the project. The words were bite, dark, decide,
demand, dog. These words were assigned labels of 0, 1, 2, 3,
4, respectively.

B. Experiment Setup

We took on the challenge of training a model with
video input. We felt that in signing everyday words and
phrases, spacial and temporal features are best conveyed
through videos. We initially started researching the I3D
(Inflated 3D CNN) model for recognizing the user-performed
signs [Haizhong, 2021]. This model is based on analyzing
individual images via a 2D CNN architecture and extending
it into a 3D CNN by capturing changes between individual
frames. The process starts with taking in a video as the user
input and dividing it into separate frames. It then examines
the images using filters that slide over the height and width
to detect objects by identifying changes in color from pixel
to pixel, creating an outline for the figure. From there, the
model compares the object positions from the previous frame
to identify movement within the video. After completing
this analysis, the program identifies which sign the user
is performing. We sought to leverage a pre-trained model
due to limitations in computational power. As well, prior
research demonstrated promising results from taking a similar
approach [Wong et al., 2022].

Unfortunately, despite our extensive research and high
optimism surrounding this pipeline, the dataset size and



computational power required to successfully deploy this
experiment was shown to be far beyond that available to us.
In light of this, we decided to pivot to a new model with
greater feasibility given our restrictions.

In shifting gears, we took a new common approach to
video classification to execute the task at hand, consisting
of a 2D CNN + Recurrent Neural Network (RNN). Through
this architecture, the CNN learns spatial features of the
video frames (images), and the RNN learns temporal features
among the various frames. This process essentially simplifies
a 3D problem into two simpler problems in 2D and 1D. A
similar roadblock was once again encountered as our available
computational power and resources did not allow for proper
training on this model. As a result, we were unable to deploy
it for our project. With that being said, a simplified version
of this architecture was successfully implemented. Removing
the LSTM, leaving the model as a 2D CNN proved to be an
adequate classifier for this undertaking.

To preprocess this data, we created a dataframe to identify
each video and its corresponding enumerated label. Each
video was split into frames (30 frames per video). The set of
frames for each video was manually analyzed, ensuring only
relevant frames were kept. The frames after starting the video
but before executing the signs as well as the frames after
executing the signs before ending the video were omitted. The
new sets of frames were then augmented through cropping,
flipping, colour adjustment, and normalization. After that, the
dataset was split into training and testing. For each video
class, 80% of the videos (i.e., sets of frames) were placed
into the training dataset, while the remaining 20% was used
as testing data. This way, the train-test split stayed consistent
at 80% to 20% on an overall basis and on a per-class basis.
From there, the data was trained on four different pre-trained
models commonly used for image classification: ResNet50,
InceptionV3, VGG16, MobileNetV3. Layers were frozen with
the exception of the last four so that the models could be
fine-tuned on our datasets.

For the graphical user interface (GUI), we envisioned a sim-
ple yet efficient sign language recognition system designed to
provide users with a clear and interactive experience for real-
time interpretation. The interface includes key features such as
a functional webcam for live classification, labels displaying
predicted signs, and accuracy metrics to offer users feedback
on their gestures. Our goal was to create an accessible on-
line solution that is both intuitive and effective. Prioritizing
simplicity and accessibility, we identified Hugging Face as
a viable program. As an open-source platform, it enables
seamless deployment of ML models in Al-driven applications.

C. Evaluation Methods

The models were evaluated using the metrics of accuracy,
precision, recall, and F1. Confusion matrices were produced
for each model to depict the class-by-class breakdown for the
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predictions. Further data augmentation was performed as input
for some of the models if problematic trends were apparent
through the confusion matrix.

D. Data Availability

Links to Kaggle are included here.
o WLASL Dataset
o Microsoft ASL Citizen Dataset

Listed below, through Table I, are the results of the four
CNN models used in this project.

TABLE I
RESULTS FROM THE EXPERIMENTS AGAINST THE TEST SET.
Model Accuracy | Precision | Recall F1
ResNet50 57.14% 60.20% 57.31% | 58.11%
InceptionV3 59.18% 58.83% 58.40% | 58.03%
VGG16 81.63% 84.86% 81.96% | 81.25%
MobileNetV3 61.22% 64.49% 60.81% | 61.31%

Pictured below, through Figure 1 and Figure 2, is the
learning curve and confusion matrix of the top-performing
CNN model used in this project: the VGG16 pretrained model.

Validation Metrics Over Epochs.

Fig. 1. Learning curve for the VGGI6 model.

Confusion Matrix for Test Set

True Label

Predicted Label

Fig. 2. Confusion matrix for the VGGI16 model.

E. Analysis

This project served as a great educational endeavour as it
allowed the team to delve deep into the pipeline of complex
computer vision projects and highlighted the significant
tradeoffs that can make or break an ML project. Despite



the significant challenges faced throughout this process, all
stemming from storage and computational power limitations,
the team was able to adapt to unideal circumstances and
create numerous working and well-performing classification
models.

It was clear from the beginning that in taking on a project
of this magnitude with the resources available, it would not be
feasible to create a decently performing model from scratch.
When leveraging the pretrained models, freezing layers and
fine-tuning proved to be advantageous. These steps helped
the models extract nuanced features of the sign gestures.

When analyzing the achieved results, interesting
observations and takeaways are extracted. First, class 4,
dog, is shown to have been best classified in all four
models, as seen via the confusion matrices. This is due to
data augmentation. When we first ran the models, class 4
underperformed relative to the other words. To combat this,
we performed further augmentation to enhance the training
data for that class. In running the models subsequently, the
dog class proved to be extremely well-captured through the
new, modified dataset.

It is also evident that the VGGI6 model outperformed the
rest by a significant margin. This can also be attributed to
further data augmentation. When we first ran this model,
the trend visible through the confusion matrix was that
class I, dark, was heavily misclassified. As a result, further
augmentation was performed on that class. When the model
was executed again, it made virtually no errors, aside from
further misclassifications of dark, but to a reduced extent
than before. It showed numerous instances of predicting class
0 on data belonging to class /. Though no further refinement
to the data was subsequently done, effort in improving the
model would entail better distinction between classes 0 and
1 to fix its one consistent mistake.

In analyzing the learning curves for the models in
comparison to the metrics obtained when the models was
run on the testing data, overfitting is observed. Further
modifications to the models would try to address this issue
through further optimization of hyperparameters, such as
dropout, learning rate, batch size, and epochs.

The models perform slightly below the results achieved
in the literature as similar projects obtain results upwards of
80% [Huang and Chouvatut, 2024], [Longlong et al., 2019].
Though we use a small number of classes, we are also limited
on the training and testing data we have. In total, we use just
under 250 videos, with less than 30 frames per video because
manual denoising (i.e., removal of frames from before and
after the signing gesture itself) resulted in the discarding of
frames. We believe that the biggest limitations our models
face is the size of the dataset and the quality of the data
and models. The data does not lack quality from a diversity
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standpoint, but rather in regards to its features. We believe
that using a higher framerate would yield better results as
there would be more data to train and test on, while the
features of the video would be better extracted. As the LSTM
is omitted from the architecture, the temporal element of
the models is lost. To compensate, a higher framerate would
allow for deeper feature extraction in the spacial dimension.

Overall, the models’ performance is consistent with the so-
phistication of the dataset and architecture used, and provides
promising insights into the capabilities of 2D CNNs to perform
video classification.

F. Ethical Considerations

The ethical considerations surrounding this project sur-
round bias and the effective, reliable use of Al-based ASL
learning tools in educational contexts. A key ethical concern
is bias with respect to some many words and signs being
unrepresented. Thus, in implementing the models explored in
this paper with a broad range of classes (words), there may
be biases in the model’s performance leading to decreased
accuracy for words that are represented less. Even with data
augmentation methods, biases may be present. The model’s
ability to generalize may also be skewed toward more fre-
quently represented signs or groups, potentially leading to
underperformance in recognizing signs or signs performed by
underrepresented demographic groups.

Many of the ethical considerations of this project also
speak to the narrative thematic analysis findings summarized
in the Related Works section, underscoring the importance of
developing a tool that can address the multifaceted limitations
surrounding ASL education. Given that our tool is intended
to be used in educational settings, particularly for beginners
learning ASL, a concern that arises is inequity in accessing
the tool. If our tool is inaccessible to those without reliable
Internet connection, for instance, this may exacerbate existing
disparities in education and communication accessibility for
individuals who are HoH, Deaf, and may have intersectional
identities such as being from low socioeconomic status, or
resource-constrained communities.

Additionally, one substantial concern of our tool is that
individuals may potentially overrely on the model for learning
ASL, deprioritizing real-world interactions with individuals
in applying their learnings. Thus, the broader ASL education
system that incorporates Al should take into consideration the
extent to which the recognition tool serves as a complement to
learning ASL, encouraging collaboration between the learner
and the technology, ensuring that the learner retains control
over their own learning process.

The potential misuse of this tool, such as using CNNs to
detect ASL in healthcare settings, also poses a significant chal-
lenge if the model miscommunicates ASL between patients
and providers, for example. Human oversight would hence be
critical to preventing harm. The key takeaway is that this tool
should not be used in isolation in high-stakes decisions, but
rather as an assistant to human expertise. Moreover, the tool



should primarily be used as an at-home supplement to ASL
education, in addition to one’s learning in real world contexts
with other individuals.

IV. CONCLUSION

To conclude, the objective of this project was to leverage
pretrained ML architectures to create a real-time sign language
classification model for common ASL words and phrases.
This was to be deployed through an interactive interface as
an educational program for users to practice their signs as
they start to learn ASL. The ResNet50, InceptionV3, VGGI6,
MobileNetV3 models were tested using a combined dataset
composed of videos from the WLASL dataset as well as the
Microsoft ASL Citizen dataset. The models were trained and
tested on five classes: bite, dark, decide, demand, dog. The
VGG16 model outperformed the rest, achieving accuracy of
81.63%, precision of 84.86%, recall of 81.96%, and F1 of
81.25%. The results are promising, showing potential for these
models to achieve results in the literature.

Factors contributing negatively to the models’ performance
include overfitting and insufficient extraction of temporal data.
With more time and computational power, proposed amend-
ments include further data augmentation, implementation of
the LSTM, and an increased frame sampling rate. Ultimately,
this undertaking successfully highlighted the gaps in ASL
education systems and proposed a working solution rooted in
Al to combat these shortcomings.

V. FUTURE WORK

The evolving field of sign language recognition continues
to call for opportunities for future advancements. Our find-
ings emphasize the role of model optimization in improving
recognition accuracy and real-time performance. To broaden
the impact of the project, we seek to refine both the models
and GUI for greater accessibility and usability. Enhancing
adaptability will allow for more accurate recognition across
various lighting conditions, skin tones, hand shapes, and
signing speeds. Another addition to the project would be
to modify the denoising algorithm. Manual denoising was
an adequate solution to preprocess the training and testing
videos, but is not doable in real-time implementation of the
software. This step must be automated before launching this
application for real-world use. From a GUI perspective, future
implementations include additional interactive features, such
as real-time feedback to offer gesture correction to users.
Furthermore, it is crucial to implement Human-Computer In-
teraction (HCI) elements and interventions as potential means
of promoting self-reflection and reducing bias on the part of
the user, in addition to examining the means by which the
model’s datasets may embed biases. Thus, consideration of
the ways in which the user interacts with the interface is
crucial in understanding the many ways through which bias
can be introduced in ML deployment. In consideration of HCI
factors such as modifying the time it takes for Al feedback
to display, providing gesture accuracy metrics and images, as
well as the ways in which the Al is represented (e.g., symbol
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or individual), the design may work better. Additionally, it
is important to evaluate our model’s performance by running
confusion matrix metrics specifically for the model’s ability
to predict signs for racialized groups, signers with disabilities,
and other underrepresented populations. Ultimately, our main
focus remains to create a seamless platform that would assist
in making sign language education and interpretation more
accessible and user-friendly.

VI. LIMITATIONS

In addition to the computational limitations discussed above,
there are several limitations to consider regarding the dataset.
First, due to limited storage and memory as well as minimal
samples per class, we worked with a small subset of the
WLASL and Microsoft ASL Citizen datasets. As a result,
the extensive diversity of these datasets was not entirely
represented. If this program were to be used by signers of
a group not represented in the data, or perhaps in a foreign
environment, the models would be limited in performance.
Overall, the smaller size and lesser diversity of the subset
used decreases the generalizability of our models. While data
augmentation can be performed for underrepresented features
in the dataset, it is not the ideal solution, and does not override
the fact that there are populations, words, and environments
underrepresented in this dataset and many others alike.
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Abstract—This paper presents the development of a reinforce-
ment learning (RL) agent for Rocket League, aiming to achieve
competitive, human-like gameplay. Building upon existing RL
frameworks and Proximal Policy Optimization (PPO), we address
limitations of prior agents by implementing a refined reward
structure that balances offensive and defensive strategies, discrete
action spaces for improved control precision, and enhanced obser-
vation processing for better spatial awareness. We utilize RLGym
and RLBot frameworks for training and interaction, respectively.
Our agent demonstrates superior performance against human
players, achieving significant score disparities in controlled
matches, showcasing advanced ball control, strategic decision-
making, and effective execution of ground-based maneuvers.
We discuss the agent’s architecture, training methodology, and
performance metrics, highlighting its strengths in dribbling,
flicking, and Kickoffs. Limitations, such as the lack of opponent
diversity during training and challenges with advanced aerial
maneuvers, are also addressed. Future work focuses on enhancing
reward functions, exploring alternative learning architectures,
and optimizing environment interaction to further improve the
agent’s competitive performance and strategic adaptability.

I. INTRODUCTION
A. Motivation

Reinforcement Learning (RL) is instrumental in the field of
Artificial Intelligence (AI), particularly in complex decision
making environments. Rocket League serves as an ideal envi-
ronment to test and refine RL algorithms, due to its dynamics
and physics-based gameplay. Notably, the development of
Lucky-SKG, a RL agent for Rocket League, has demonstrated
superior performance, outperforming top ranking bots like
Necto and Nexto, while establishing new benchmarks in the
game [1].

Despite advances in RL, academic and professional aware-
ness remains limited. Highlighting successful applications of
RL in popular games such as Rocket League can serve as
an engaging way to educate and inform the public about
the potential of RL. This application showcases the practical
uses of RL, which additionally inspires further research and
development in the field.

B. Related Works

Several reinforcement learning (RL) agents are developed
for Rocket League, with notable contributions from Necto
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and Nexto. These agents utilize the RLGym and RLBot
frameworks alongside Proximal Policy Optimization (PPO) to
train competitive bots. Their methodologies primarily focus
on reward-driven policy optimization, allowing them to outper-
form traditional scripted bots. However, they struggle with fine
motor control, adaptability to dynamic scenarios, and complex
maneuvers such as aerials and flip resets.

More recently, Lucky-SKG demonstrated superior perfor-
mance by improving policy optimization and reward struc-
ture. Its methodology integrates a more refined balance be-
tween offensive and defensive strategies while leveraging self-
play for continuous improvement. Despite its advancements,
challenges remain in improving strategic decision-making,
especially in unpredictable in-game scenarios where human
intuition often outperforms Al

Our work builds upon these efforts by addressing these as-
pects of training. Our refined reward function, unlike previous
approaches, often prioritizes goal-scoring at the expense of
broader game play strategy. We introduce a balanced reward
structure that accounts for positioning, boost management,
and defensive plays. Enhanced Action Parsing: While prior
agents rely on continuous action spaces, we implement dis-
cretization techniques to improve control precision, reducing
erratic behavior. Using advanced observation processing, by
altering how the agent perceives game state information, we
improve spatial awareness and strategic adaptability. These
enhancements contribute to a more competitive and adaptable
Al agent, capable of executing high-level plays with greater
efficiency. Future work explores further optimization strategies
and alternative learning architectures to push the boundaries
of RL performance in Rocket League.

C. Problem Definition

The problem we aim to solve is the development of a
reinforcement learning (RL) agent capable of playing Rocket
League at a competitive level while exhibiting human-level
gameplay. Traditional scripted bots, as well as earlier RL-
based agents, demonstrate strong decision-making in con-
trolled environments but struggle with complex maneuvers,
adaptability, and strategic decision-making in dynamic game



states. Additionally, imitation learning approaches, such as
TensorBot and Levi, attempt to learn from human replays
but face challenges due to data loss, inconsistency, and action
dependencies. Formally, given a sequence of game states St,
the goal is to determine an optimal policy (at — St) that
maximizes the probability of winning the game while ensuring
smooth and human-like gameplay. The optimization objective
is given by:

T
J(O) =By | Y e (1)
t=0

Where represents the policy parameters, is a trajectory
sampled from the policy, is the discount factor, and rt is the
reward function at time step .

Balancing exploration and exploitation ensures the agent
explores novel strategies while optimizing for performance.
Handling continuous and discrete action spaces in Rocket
League requires fine-grained control over movements, making
action space discretization essential for improved stability.
Adapting to dynamic opponents, unlike scripted Al, human
players and self-improving bots present unpredictable behav-
iors, requiring real-time adaptability. By leveraging Inverse
Dynamics Models (IDM) for improved action inference and
refining reward structures to balance offensive and defensive
playstyles, we aim to develop a robust, competitive RL agent
that surpasses the performance of existing models while in-
corporating human-like strategic elements.

II. METHODOLOGY

A. Frameworks

To train the agent, we use the RLGym framework [2],
allowing the agent to train in Rocket League as if it were
an OpenAl Gym environment. The RLGym framework uses a
plugin for Rocket League called Bakkesmod [3], increasing
game speeds for training purposes. Furthermore, RLGym
creates multiple instances of the game to run allowing for
multiple agents to train simultaneously.

For the agent to interact with the game, we implement the
RLBot framework [4]. The framework allows for the RL agent
to connect to the game by providing an API. The framework
provides the agent its action space and observation space,
which are the actions the agent can take, and the respective
information about the current state at the given time step. This
enables the framework to let individuals play against the bot
in Rocket League.

B. Optimizing Policy

To have the agent play at a competitive level, it requires a
policy that maximizes the probability of winning the game.
The policy is optimized using Proximal Policy Optimization
(PPO)|[cite]. The main idea of PPO is that the next policy is
similar to the previous policy. As well, PPO uses generalized
advantage estimation (GAE) to balance variance and bias.
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Furthermore, PPO uses an entropy coefficient to balance
between exploration and exploitation.
PPO updates policies via

Op+1 = argmax B [L(s,a,0,0)] @)
s,anvmg,
Where L(s,a,0,0) is
L(s,a,0,0) = min (MA”% (s,a),
7o, (als) 3)

9le, AT (s,0)))

The hyperparameters the agent uses to train are displayed
in Table I. One hyperparameter is changed during training, the
learning rate, which is reduced as training continues.

Hyperparameter Value
PPO Batch Size 50,000
Timesteps per Iteration 50,000
Experience Buffer Size 150,000
PPO Minibatch Size 50,000
PPO Entropy Coefficient 0.01
PPO Epochs 2
Standardize Returns True
Standardize Observations False
Save Every Timesteps 100,000
Timestep Limit 1020
Policy Learning Rate 2x 1074
Critic Learning Rate 2x 1074

Policy Layer Sizes
Critic Layer Sizes

(1024, 1024, 1024, 1024, 512)
(2048, 1024, 1024, 1024, 512)
TABLET
HYPERPARAMETER SETTINGS

C. Observation Space

At each time step, the agent receives 89 inputs about the
game that contain physical information about the player and
the ball, as well as the information about boost pads. RLBot
and RLGym provide these observations and scale them from
[-1, 1] before feeding this information into the neural network.

The game’s information passes through a series of arrays
of data fed from the game’s memory. This allows the agent
to know the environment information at each timestep and
enables the computational costs to be lower than feeding
images into the agent.

D. Action Space

The action space in Rocket League is made up of 5 con-
tinuous actions ranging in the interval [-1, 1], and 3 boolean
actions (Table II). However, continuous actions in RL make
it hard for the agent to control the car. Therefore, we turn
the continuous actions into discrete actions by making bins,
whereby the agent can select a discrete value to throttle, steer,
and roll, allowing the agent to have better control over the car.

E. Neural Network Architecture

The agent uses a feedforward network that is trained using
PPO in an actor-critic framework. The network receives the
89 inputs from the observation space, which are preprocessed
and converted into PyTorch tensors. The tensors are then



Action Domain
Throttle {-1,0, 1}
Steer {-1,0, 1}
Pitch {1,0, 1}
Yaw {-1,0, 1}
Roll {1,0, 1}
Jump {0, 1}
Boost {0, 1}
Handbrake {0, 1}

ACTION SPACE FOR LOOKUPACTION

fed through four fully connected layers with ReLU activation
functions. The final layer of the network outputs discrete logits
corresponding to different control actions (such as throttle,
steer, jump, boost, etc.). These logits are then adjusted for
uniformity, where padding is applied as needed, ensuring that
all action dimensions are compatible.

Input
89

[

FC
1024

[

FC
1024

[

FC
1024

[

FC
1024

[

FC
512

[

Output
8

F. Reward Weights

For the agent to learn an optimal policy, reward functions
are used to speed up learning. Table III shows the rewards
that the agent can earn with their associated weights. The
rewards given to the agent are either sparse or dense, with
sparse rewards being received only when a certain condition
is met, whereas dense rewards are given at each timestep. Each
time step, the reward is multiplied by its associated weight to
obtain the total reward for the agent at that time step.

G. Exploration

We allow the agent to explore the environment in two
ways. The first being the entropy coefficient, during the entire
training process, the coefficient is set to 0.01, allowing the bot
to occasionally explore new gameplay options. In addition, the
agent’s state is randomized to increase the amount of scenarios
the agent is in. Instead of always being placed in the default
kickoff position, eighty percent of the time the agent and ball
are put in a random spot on the field with a random velocity.
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Reward Name Weight
Goal 300
Demo 5
VelocityBallToGoalReward 1.1
FaceBallReward 0.08
TouchVelReward 1
JumpTouchReward 0.3
SpeedTowardBallReward 0.2
AlignBallGoal 0.4
LiuDistanceBallToGoalReward 0.4
LiuDistancePlayerToBallReward 0.3
FlipResetReward 100

REWARD WEIGHTS FOR DIFFERENT EVENTS

III. RESULTS
A. Milestones

During the initial training phase, the agent was set up to
learn how to jump and touch the ball, both key parts of playing
Rocket League. This laid the groundwork to later perform
more complex actions. Once the agent became proficient in
jumping and ball touches, the training shifted from jumping
and ball touches, to pushing the ball towards the net and
accurate goals. As the agent became more accurate, it was
encouraged to then put more force into the ball to enhance
offensive capabilities. Building on these foundations, advanced
techniques could now be introduced such as flicks and drib-
bles. Flicking allowed the agent to redirect the ball in mid
air to perform advanced shots. Dribbling gives the agent the
ability to quickly carry the ball into the net. Each of these
milestones greatly contributed to the agent’s overall skill set,
paving the way for complex and strategic behavior in the field.

B. Strategy

The agent demonstrates an impressive range of strategies,
particularly excelling in dribbling and executing flicks at close
range to enhance its goal-scoring ability. Without direct input,
the agent effectively implements these techniques, showcasing
advanced ball control and offensive decision-making. Fur-
thermore, the agent consistently performs well in kickoffs,
mirroring the approach of professional players in one-on-one
scenarios. While it does not master aerial attacks, it efficiently
executes flips, controlled shooting, and ball receptions from
high touches to transition into dribbles and scoring oppor-
tunities. On defense, the agent exhibits patience by waiting
for shots and strategically positioning itself, making it highly
effective in maintaining control over matches. During testing,
the agent remained undefeated against all human challengers,
demonstrating its ability to outmaneuver opponents through
refined strategy and adaptability.

The agent also displays a fundamental understanding of
boosting and flipping into the ball, effectively using boost
to return to defensive positions or advance offensively while
maintaining ball control. Its well-trained kickoff approach
remains consistent regardless of positioning, leading to a high
success rate in gaining possession and frequently converting
kickoffs into goals.



C. Scores

During our conference showcase, we conducted a series of
eight matches between a human player and our reinforcement
learning-based Rocket League agent. The recorded scores,
presented as human score vs. bot score, are as follows:

e Match 1: 1-29
Match 2: 1-17
Match 3: 1-20
Match 4: 2-20
Match 5: 0-24
Match 6: 1-18
Match 7: 0-7

Match 8: 0-37

A detailed examination of these results reveals a significant
performance disparity between the human player and the
bot. In most matches, the human goal tally is extremely
low compared to that of the bot. For example, in Match 1,
the human scored only one goal versus the 29 goals of the
bot. This yields a human-to-bot score ratio of approximately
0.0345, or 3.45%, when calculated as:

H 1
uman Score _ o ~ 0.0345

Ratio =
Bot Score

Similarly, Match 4 represents the best relative performance
for the human, where a score of 2 against 20 results in a ratio
of 0.1 or 10%. In contrast, Matches 5, 7, and 8 recorded no
goals for the human, corresponding to a 0% ratio.

When summing the performance across all matches, the
total goals scored were 6 for the human and 172 for the
bot. This cumulative data gives an overall human scoring
percentage calculated by:

6 6
6+172 178 3.87%

Overall H P tage =
verall Human Percentage 178

These numbers highlight that, on average, the human con-
tributed only about 3.37% of the total goals across all matches.

D. Limitations

Several limitations highlight areas for further improvement.
One significant limitation is the lack of opponent diversity
during training. During training, the agent was only trained
against the current version of itself, this may have restricted its
ability to generalize effectively against more advanced strate-
gies. Computational constraints also presented a challenge,
limiting the extent of experimentation with different reward
functions, hyperparameters, and training durations. Another
notable limitation is the agent’s inability to execute advanced
aerial maneuvers such as aerial shots, flip resets, and ceiling
plays. Although the agent demonstrated strong ground-based
mechanics, including dribbling, flicks, and powerful shots, it
struggled to take advantage of airborne plays.
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IV. CONCLUSION

The investigation into integrating artificial intelligence into
Rocket League entailed developing and training an Al agent
using reinforcement learning techniques. Our work involved
utilizing a simulation environment (RLGym) that replicates
key elements of Rocket League gameplay, implementing
a reward function tailored to promote desirable agent be-
haviours, and fine-tuning the agent using PPO to achieve
optimal performance. Through iterative experimentation with
unique rewards, a baseline from which the agent could learn
fundamental actions was established. These actions include
tracking the ball, jumping, using boost, striking the ball, and
most importantly, getting goals.

Looking forward, several avenues for further development
emerge. Enhancing the reward function allows the agent to
handle more advanced strategies and make more intelligent
in-game decisions to create a more sophisticated play style.
Experimenting with more additional sub-rewards, such as
positioning, defense, and goaltending, would help make the
agent play more strategically.

Increasing the training process by adding the number of
parallel environments and challenging the agent against its
previous versions, can allow stronger adaptability and more
efficient development. Additionally, by having agents play
against each other (themselves) and retaining the winning
strategies, this will allow the agent to improve continuously.
This gradual progression from simpler scenarios to more
complex challenges may be beneficial for achieving a higher
level of competitive performance.

Another direction for further development is optimizing how
the agent perceives and interacts with the environment. De-
veloping custom observation parsers that extract richer, more
detailed state information, such as spatial-temporal features
and complex game dynamics, could enable a deeper under-
standing of the agent’s surroundings. Additionally, exploring
different action parsers that provide a more continuous and
flexible control mechanism may allow the execution of more
precise maneuvers, such as pinches and flip resets.

Ultimately, future research should aim to identify new
reinforcement learning approaches that enhance both learning
efficiency and practical in-game performance, with the under-
standing that these refinements may yield unexpected insights
beyond the scope of the current study.
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Abstract—Art Suggester is an Al-based art recommendation
tool designed to inspire artists and enthusiasts by providing per-
sonalized art suggestions based on their available materials. The
system uses a Convolutional Neural Network (CNN) to classify
art mediums (e.g., paint, pencil crayons, markers) and a color
detection algorithm to identify dominant colors in user-uploaded
images. These inputs are used to recommend artworks from a
curated database, making art discovery more accessible and en-
gaging. Our CNN model achieved an accuracy of 95.12%, demon-
strating its effectiveness in medium classification. The project
highlights the potential of AI to bridge the gap between art
creation and appreciation, offering a creative tool for artists and a
learning resource for beginners. Code and resources are available
at https://github.com/McMasterAI2024-2025/ArtSuggesterAl.

I. INTRODUCTION

Art Suggester addresses the challenge of artists having
materials but lacking inspiration. By leveraging Al, the tool
provides personalized art recommendations based on the mate-
rials and colors available to the user. This solution is significant
because it enhances creativity, simplifies art discovery, and
makes art more accessible to a broader audience [1]. Previous
research has explored Al-driven art classification [2] and
generative models [3], but few systems integrate medium
identification and color analysis for tailored recommendations.
Our approach combines CNN-based medium classification
with color detection to offer a unique solution.

A. Motivation

Recent advancements in Al, particularly in CNNs and
generative models, have made Al-driven art tools increasingly
relevant [4]. CNNs having the ability to be trained on smaller
datasets have improved image classification accuracy, enabling
precise medium detection [5]. The global Al art market, valued
at $3.2 billion in 2024, is projected to grow to $40.4 billion by
2033 [6], highlighting the growing interest in Al applications
for creativity. However, existing tools often focus on style
classification or generative art, leaving a gap for systems
that integrate medium identification and color analysis. Art
Suggester fills this gap by providing a tool that inspires artists
and simplifies art discovery.

B. Related Works

Previous research has explored Al-driven art classification
and recommendation systems. For example, CNNs have been
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used for style and medium classification, while collaborative
filtering has been applied for personalized recommendations.
Generative models like DALL-E and Stable Diffusion have
also gained popularity for creating art from text prompts [1].
However, these approaches often lack integration of medium
and color analysis, which Art Suggester addresses.

C. Problem Definition

The Art Suggester faces challenges such as ensuring data
quality and diversity for accurate medium detection, as main-
taining model performance across varying image conditions
(e.g., lighting, backgrounds) is difficult. We also need to have
a variety of possible art recommendations with different styles
and colours. Designing a user-friendly interface for the Art
Suggester involves creating a secure user account system that
caters to both artists and non-artists, adding complexity to
the development process. The interface must feature intuitive
navigation, ensuring users can easily upload images, view
recommendations, and favourite art pieces. Balancing these
challenges while delivering an accessible tool is key to the
project’s success.

II. METHODOLOGY
A. Data

We used a dataset comprising images from Google Im-
ages and custom photos of art materials (e.g., paint, pencil
crayons, markers) taken under various lighting conditions. For
recommendations, we utilized Kaggle datasets such as ”’Surreal
Symphonies” [7] and Portrait Paintings.” [8] The data was
preprocessed to 256x256 resolution and augmented to improve
model robustness.

B. Model & Approach

We implemented a CNN using TensorFlow for medium clas-
sification. The model includes convolutional layers, dropout
layers, and a softmax activation for classification. It was
trained for 16 epochs with a validation split of 0.1 and
a batch size of 16. We used the Adam optimizer with a
learning rate of 0.001 and sparse categorical crossentropy
as the loss function. For our color detection algorithm, we
used the Python Imaging Library to detect color clusters and
compare them to a predetermined list of colors, which were



also used to categorize our art pieces. Our database for users
login information and favourite images were stored using
MongoDB.

C. Evaluation

We evaluated the Art Suggester model using accuracy as
the primary metric, measuring the percentage of correctly
classified images, and employed confusion matrices to analyze
performance on both a 10% test set and completely new
images. This approach helped us assess the model’s generaliza-
tion ability and identify areas where it struggled, such as dis-
tinguishing between specific classes like paint, pencil crayons,
and markers. Validation was conducted using a 10% test set
and additional unseen images to ensure accuracy. Challenges
included ensuring dataset diversity to account for varying
lighting conditions and backgrounds. As well as, addressing
overfitting (memorizing training data rather than generalizing
the patterns) through dropout layers and early stopping; and
handling real world variability, such as low-quality images
from user devices with poor lighting or resolution. We also
did create models for a variety of epoch counts to compare
them.

TABLE 1
COMPARISON OF ACCURACY ACROSS DIFFERENT EPOCH COUNTS

Epochs | Training Accuracy | Unseen Data Accuracy Loss
5 99.23% 11/14 0.0209
10 100% 11/14 0.00073
15 95.12% 12/14 0.0012
20 98.7% 9/14 0.004
25 99.7% 11/14 0.006

Our early stopping was based on if the loss would not change
over around 10 epochs. We did this to reduce chances of
overfitting. The early stopping would often stop at 15 epochs,
along with the fact it was best at classifying completely unseen
data with bad framing or resolution we decided to use 15
epochs for our final product. For our color detection, we
achieved an accuracy of up to 85% for each uploaded photo.
To improve the user experience and avoid potential mistakes
from the algorithm, we added an option for users to manually
adjust their color preferences before art pieces are suggested.

ITII. RESULTS

The CNN model achieved an accuracy of 95.12%, demon-
strating its effectiveness in classifying art mediums. The color
detection achieved an accuracy of up to 85% in detecting
the medium’s colors. The confusion matrix (a graph to show
model medium predictions compared to the actual medium)
showed 174 correct classifications out of 189 test cases.
The system successfully integrated medium classification and
color detection to provide personalized art recommendations,
outperforming traditional approaches in handling diverse art
styles and simplicity of exploration.
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IV. CONCLUSION

Art Suggester demonstrates the potential of Al to enhance
art discovery by combining medium classification and color
detection. The project achieved high accuracy and provided
a user-friendly interface for personalized recommendations.
Future work includes expanding the dataset, adding user
feedback mechanisms, and optimizing the system for mobile
devices. The tool has applications in art education, galleries,
and interior design, making art more accessible and engaging
for everyone. A detialed process flow diagram is below:
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Abstract—Road damage significantly impacts infrastructure
efficiency, road safety, and maintenance budgets. This paper
introduces an automated road damage detection and visualization
system employing advanced deep learning models, specifically
YOLOv11 and YOLOVI12 [1], [2], with ongoing testing of Deep-
SORT [3] for improved detection tracking across video frames.
Utilizing a Raspberry Pi [6] equipped with a camera and GPS
module, synchronized video and GPS data are captured. Data
is uploaded to a Node.js [8] and Next.js [9] web platform for
processing, resulting in an interactive, color-coded map allowing
detailed damage analysis and route navigation based on road
damage data. Our model achieves a mean Average Precision
(mAP) of 54%, indicating significant practical applicability.

I. INTRODUCTION

Automated detection of road damage, including potholes
and surface cracks, is essential to maintaining road safety,
reducing maintenance costs, and enhancing transportation ef-
ficiency. Traditional manual inspections are costly, slow, and
error-prone. This research presents a comprehensive automated
approach leveraging state-of-the-art deep learning models,
YOLOv11 and YOLOVI12 [1], [2], combined with the Deep-
SORT tracking algorithm [3], currently under evaluation.

II. METHODOLOGY
A. Datasets and Model Development

The models were trained and evaluated on datasets from
the Canadian Road Damage Detection Challenge (CRDDC
2022) [4] and the IEEE Big Data Cup 2022 [5]. YOLOvI1
and YOLOv12 models were selected for their accuracy and
efficiency in real-time detection scenarios. Training utilized
Google Colab Pro+ [7] with NVIDIA A100 GPUs, signif-
icantly accelerating training times and enabling extensive
hyperparameter tuning. Data augmentation techniques, includ-
ing random cropping, rotations, brightness adjustments, and
scaling, were employed to enhance model robustness across
varying road conditions and lighting scenarios.

B. Hardware Setup for Data Collection

A Raspberry Pi [6] equipped with a high-resolution camera
and GPS module was mounted on a vehicle for field data
collection. Synchronized video footage in MP4 format and
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timestamped GPS coordinates were captured and logged,
enabling accurate geospatial tagging of detected road damage.

C. Processing Workflow

The system’s operational workflow includes:

1) Upload Interface: Users upload recorded MP4 videos
and corresponding GPS text logs via a custom-built web
interface.

Damage Detection and Tracking: Uploaded videos
undergo inference using YOLOv11 and YOLOvV12 mod-
els [1], [2]. DeepSORT tracking is actively tested to
improve tracking accuracy across video frames [3].
Output Integration: Detection results are combined
with GPS data into structured CSV files, containing de-
tailed timestamps, locations, and damage classifications.
Visualization and Navigation: CSV data generates
an interactive, geospatial map displaying road damage
markers color-coded by severity. Users can interact with
the map to obtain detailed information and utilize nav-
igation features, allowing route optimization based on
preferences to either avoid or intersect damaged roads.

2)

3)

4)

D. Web Platform and Storage

The web application, developed with Node.js [8] and
Next.js [9] frameworks, offers an intuitive user interface,
efficient processing pipeline, and robust data management
facilitated by Azure Blob Storage [10]. This cloud backend
ensures secure, scalable storage of video files, GPS data,
processed outputs, and visualization results.

III. APPLICATIONS AND USE CASES

The developed system addresses multiple practical scenar-
ios:

o Municipal Road Inspection: Automating routine road
condition assessments to maintain safety.

¢ Road Maintenance Planning: Optimizing resource al-
location by mapping damaged road sections.

o Autonomous Vehicle Navigation: Enhancing vehicle
route safety by providing detailed road condition data.



Insurance Assessment: Providing visual evidence of
road conditions to support claim processing.

Public Safety Enhancement: Identifying and repairing
hazardous sections to reduce accidents.

Logistics Optimization: Rerouting shipments to avoid
damaged roads, minimizing transportation costs.
Infrastructure Development: Assessing road quality
pre- and post-construction for improved durability.
Environmental Impact Analysis: Studying the influence
of weather and disasters on road conditions.

Disaster Recovery: Prioritizing road repairs after natural
disasters to quickly restore essential transportation routes.
Low-Clearance Vehicles: Allowing low-clearance vehi-
cles to select routes that avoid severe road damage and
speed bumps.

IV. EXPERIMENTAL RESULTS

Our system achieved a mean Average Precision (mAP)
of 54%, demonstrating effective real-world applicability in
diverse environmental conditions. The ongoing integration of
DeepSORT is expected to further improve detection accu-
racy by enhancing anomaly tracking across consecutive video
frames.

A. Model Evaluation

Figures 1 and 2 illustrate confusion matrices for YOLOv12-1
and YOLOV12-s models, respectively, detailing true positives,
false positives, and class misclassifications. Figure 3 displays
training and validation loss curves along with precision and
recall metrics, highlighting training progress and model per-

formance.
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Fig. 1. Confusion Matrix for YOLOv12-1 Model

V. CONCLUSION AND FUTURE WORK

This study successfully integrates advanced object detection
methods, effective tracking algorithms, and practical visual-
ization and navigation tools into a cohesive system for road
damage detection and management. Future enhancements in-
clude refining the DeepSORT integration, improving detection
accuracy in challenging environmental scenarios, and further
optimizing model efficiency for edge device deployment.
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Abstract—Detecting threatening behavior remains a significant
challenge in security and public safety. BOLLD is a multimodal
threat detection approach that combines body language analysis,
lip reading, and reinforcement learning to assess potential mali-
cious behaviour in real-time. Using MediaPipe for skeletal track-
ing, a Random Forest classifier and a modified LipNet model, the
system evaluates both physical and verbal cues to improve detec-
tion accuracy. In testing, BOLLD significantly improved its per-
formance, demonstrating its potential for security applications in
environments where audio is unreliable as well as aid individuals
with visual impairments by enhancing situational awareness. The
project is available at github.com/McMasterAI12024-2025/BOLLD

I. INTRODUCTION

Detecting threatening behavior is a key challenge in security
and public safety, but most existing solutions focus on either
physical actions or verbal communication rather than both.
This project introduces BOLLD (Body and Oral Language
Learning Decoder), a system that combines body language
analysis and lip reading for real-time threat detection. It uses
MediaPipe for skeletal tracking and facial landmark detection,
a Random Forest classifier to categorize body poses, and a
modified LipNet model to analyze spoken words for potential
dangerous actions. A reinforcement learning component fur-
ther refines detection by integrating physical and verbal cues.
This multimodal approach improves real-time processing and
could be useful in environments where audio is unreliable, as
well as in assistive technology for visually impaired individ-
uals.

A. Motivation

BOLLD takes a multimodal approach to real-time mali-
ciousness detection by combining computer vision, natural lan-
guage processing, and reinforcement learning. This research is
particularly relevant today as Al advancements shape public
safety and security measures.

By integrating body language analysis, lip reading, and re-
inforcement learning, BOLLD detects threats in environments
where audio may be unavailable or unreliable, aligning with
ATI’s growing role in cybersecurity and physical security.

Research on Al-powered multimodal search engines demon-
strates the effectiveness of combining text, images, audio, and
video for situational awareness [1]. Similarly, BOLLD merges
visual and verbal cues to assess alarming actions.
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Natural language processing (NLP) has proven valuable in
Cyber Threat Intelligence by automating large-scale dataset
analysis to identify malicious activity [2]. BOLLD extends this
by applying NLP to lip-transcribed speech, detecting verbal
threats without audio.

Recent studies highlight the predictive potential of Al and
NLP in cybersecurity threat detection [3]. These technologies
can identify risks early, and BOLLD adapts this capability for
physical threat detection by analyzing both body language and
spoken content.

Additionally, research into Al-driven tracking and real-
time detection in cybersecurity [4] provides a framework
that parallels BOLLD’s multimodal strategy for identifying
physical threats.

By building on these advancements, BOLLD enhances pub-
lic safety, particularly where audio-based violence detection is
ineffective.

B. Related Works

Recent research in multimodal Al has made significant
progress in threat detection, particularly in cybersecurity and
public safety. This section explores related work and how
BOLLD contributes to addressing some of the existing chal-
lenges.

Multimodal AI systems integrate different types of data,
such as text, images, and geospatial information, to improve
the identification of suspicious actions [5]. arge language
models (LLMs) like ChatGPT and Gemini have also embraced
multimodality, processing and reasoning across text, images,
and even audio inputs. By combining multiple sources, these
models overcome the limitations of traditional methods, mak-
ing real-time decision-making more reliable.

Al-driven multimodal search engines have also been ex-
plored for cybersecurity applications. These systems use ma-
chine learning to analyze security threats from multiple per-
spectives, but challenges remain in refining their accuracy and
efficiency [1].

One recent development is FIRE, a framework designed for
few-shot inter-domain threat detection using large-scale mul-
timodal pre-training [6]. This approach helps detect hostility
in complex network environments with minimal labeled data,
addressing a key issue in cybersecurity.

However, there are still significant challenges in this field,
including processing multimodal data in real time, balancing



accuracy with computational efficiency, ensuring privacy in
surveillance applications, and adapting to evolving aggressive
patterns. This integration allows for real-time threat detection
in scenarios where audio may be unreliable or unavailable,
expanding its potential applications across various security
contexts.

C. Problem Definition

Most threat detection systems focus either on physical
actions or speech, but rarely consider the connection between
body language and spoken words. This gap can make them less
effective in real-world situations where audio is unreliable or
unavailable, such as in noisy environments, security footage
without sound, or meetings where microphones fail.

BOLLD is designed to address these challenges by com-
bining computer vision-based body language recognition with
real-time lip reading. By analyzing skeletal motion alongside
transcribed speech, BOLLD aims to improve the accuracy of
identifying malicious actions. It also incorporates reinforce-
ment learning to refine its predictions over time. Given a
sequence of upper body movements and lip motions (X), the
system predicts a threat/violence score (y), adjusting dynami-
cally based on behavioral patterns.

By linking physical and verbal cues, BOLLD could be
useful in security applications where audio isn’t available
and in assistive technology for visually impaired individuals
who rely on real-time alerts through wearable devices. This
approach offers a step toward more adaptive and effective
multimodal violence detection, addressing the limitations of
systems that rely on a single data source.

II. METHODOLOGY

This section outlines the approach used to develop BOLLD,
a system that combines body language analysis and lip reading
for real-time threat detection. The process includes data col-
lection, model training, evaluation, and continuous refinement
to improve accuracy.

BOLLD is built using Streamlit and integrates Al models
for analyzing both body language and lip movements in live
video. Figure 1 illustrates the data flow. When the system is
activated, it initializes session state variables to track violence
levels, actions, rewards, and video frames. It also loads pre-
trained models for body language recognition and lip reading.

The system processes live video input, extracting facial and
body landmarks using MediaPipe and dlib for feature normal-
ization. Lip movements are detected, converted to grayscale,
and passed through a lip-reading model that transcribes speech
roughly every 75 frames. A predefined dictionary assigns
violence scores to transcribed words, and a reinforcement
learning (RL) agent determines an action, either “all good” or
“de-escalate,” based on detected danger levels. The RL model
continuously updates its Q-table by evaluating past rewards
and adjusting its predictions accordingly. Real-time metrics,
including threat levels and rewards, are visualized with Plotly,
while the video feed is displayed on Streamlit’s UL The system
runs continuously, analyzing each incoming frame, until it is
manually stopped.
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Fig. 2. The MediaPipe mouth/lip area mappings.

A. Body Language Component

The body language model relies on skeletal tracking
data generated through Google’s MediaPipe computer vision
framework (Figure 2). The MediaPipe framework consists of
abstracted pre-trained deep learning models that can readily
identify skeletal landmarks on the human body in video
frames.

Participants were recorded performing various poses. Using
MediaPipe, the coordinates of a participant’s face, pose, and
hand landmarks across each frame in a recording session
were written to a dataset with a pre-set label of “threatening”
or “non-threatening.” The frame coordinates and their labels
were stored in a CSV file and used to train a Random Forest
classifier, which learns to distinguish between threatening and
non-threatening postures based on skeletal coordinates.

To ensure consistency, normalization techniques were ap-
plied, adjusting landmark positions relative to a reference body
point to minimize position-based distortions. This helped re-
duce misclassifications caused by variations in user positioning
in front of the camera. Inter-landmark normalization was also
applied, using the distance between the shoulders as a relative
scale.

Additionally, a rolling average mechanism was introduced
to smooth fluctuations in predictions across frames and con-
textualize the instantaneous threat score. The trained Random
Forest model was exported using Pickle and deployed for
real-time classification. As the system processes video input,
predictions are continuously updated and displayed on the UL

B. Lip Reading Component

The lip-reading model is based on LipNet [7], [8], a
deep learning framework that uses convolutional and recurrent
neural networks to transcribe speech from visual input. Unlike
models that classify individual words, LipNet processes entire
sequences, improving accuracy by capturing context over time.
The model was modified to work with live video input by
storing the 75 most recent frames and using them as input.
The oldest 15 frames are then removed, making room for 15
new frames.

The model consists of three spatio-temporal convolutional
layers, each followed by a max-pooling layer, which extract

59

— / =4
| Ve
L"‘.

t frames

7
7
7 |
7]

¢ /
1/

o .
/ S
f i

7 s

/

Spatial Pooling

CTC loss

STCNN Bi-GRU

(x2)

Linear
(x3)

Fig. 3. LipNet architecture [9].

spatial and temporal features from lip movement sequences.
These features are then processed by two recurrent neural
networks, which analyze sequential dependencies. Finally, the
Connectionist Temporal Classification (CTC) loss function
helps align predicted sequences with the transcribed text,
accounting for natural variations in speech (Figure 3).

To identify speech that is not friendly, a dictionary of violent
keywords was created, assigning each word a predefined
violence score. The lip-reading model transcribes speech, and
each word is checked against this dictionary. If threatening
words appear consistently, the highest detected violence value
is passed to the RL model for further decision-making, every
15 frames.

C. Reinforcement Learning Component

To refine threat classification, a reinforcement learning (RL)
framework was implemented, allowing the system to adapt to
new behaviors over time. The RL model learns to associate
physical movements and speech patterns with hostile levels,
adjusting its predictions dynamically.

The reinforcement learning environment/approach in this
code is simulated using a Q-learning approach to classify
behaviors as threatening or non-threatening based on speech
and body language. The system maintains a Q-table, which
maps states (determined by the detected threat level) to actions
("all-good” or ’de-escalate”). It updates the Q-values using the
formula:

Q(s,a) = Q(s,a) + a(r + 7 max Q(s',d) — Q(s,a))

where « is the learning rate, +y is the discount factor, r is the re-
ceived reward, and max Q(s’, a’) represents the estimated fu-
a/

ture reward. The system balances exploration and exploitation
using an epsilon-greedy strategy, which sometimes chooses
random actions to improve learning.

During execution, the model receives input from lip-reading
and body language analysis to classify behaviors. If a threat-
ening word is detected in speech or if body language suggests
aggression, the system assigns a threat level and chooses an
action. After an action is taken, a reward is assigned based on
correctness, and the Q-table is updated accordingly. The model
saves and loads the best-performing Q-table to improve over
time. By continuously updating based on real-time data, the
system learns to detect threats more accurately and respond
effectively.



The RL components: State: Real-time threat conditions,
including body language patterns and speech analysis phases.
Action: Choosing between all-good” or “de-escalate” re-
sponses.Reward: A combination of correct threat assessment
time and appropriate response outcomes.

III. RESULTS

This section presents the model’s performance in detecting
threatening and non-threatening behavior. The results are ana-
lyzed from different perspectives to evaluate the effectiveness
of the approach. We also discuss key findings, improvements
made during development, and the impact of specific method-
ological choices.

A. Parameter Optimization

Extensive testing was conducted to fine-tune the reinforce-
ment learning model’s parameters.

For the learning rate, a range of 0.15-0.20 provided a
balanced approach with moderate value fluctuations, allowing
the model to adjust gradually based on the data, preventing
possible overshooting of optimal solutions while learning
from the outcomes. This range reduces volatility and adjusts
weights appropriately in accordance with the environment.
Alternatively, a range of 0.25-0.35 resulted in more stable
outcomes with improved interpretability. In this range, the
model was capable of converging faster by making larger
updates to the weights, resulting in a smoother learning
process and reducing random fluctuation, albeit at a marginal
cost to responsiveness. Based on this, the optimal learning rate
was set at 0.28, providing a reasonable balance into a smoother
operation with respect to the adaptability of the model. At 0,
the model would not learn from new experiences, while at 1, it
would completely overwrite previous learning with each new
experience.

The discount rate was tested across multiple ranges. Values
between 0.60-0.70 led to faster response times, whereas
0.75-0.85 improved stability and reliability. On the lower
range, the model prioritizes more immediate reward as a faster
response, with the trade-off of being less reliant on long term
interpretation. On the higher range, the model alternatively
prioritizes future reward, leading to cautious decision making
at the cost of speed. Given the use case of the model, the best
trade off was found at 0.71, where balance was shifted more
towards quick interpretation.

For the exploration rate, values between 0.25-0.40 were
analysed. Higher values in this range led to better respon-
siveness but introduced slight latency, as the model explores
a broader set of actions at a cost of excessive exploration and
increased randomness.

Lower values produced more consistent but less adaptive
results, as the model relies more on the exploitation of known
actions, which provides more consistent results while lowering
the models adaptability. The optimal setting was determined
to be 0.39, striking a balance between exploration and ex-
ploitation with an emphasis on the ability to adapt to human
behaviour.
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Fig. 4. An example of model identifying non-threatening behaviour.

Warning: Elevated Threat Level

de-escalate
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Fig. 5. An example of model picking up on threatening behaviour.

B. Model Performance and Improvements

Early tests revealed inconsistencies in the body language
model’s ability to identify threats, mainly due to variations
in the user’s distance from the camera. This positional bias
affected classification accuracy, leading to a high rate of false
positives and false negatives.

To address this, a normalization process was implemented to
account for differences in on-screen position. This adjustment
reduced classification errors caused by distance by 90%,
ensuring that maliciousness detection was based on actual
behavior rather than a user’s relative position.

Another major improvement was the introduction of a
rolling average for threat scores. Initially, the model clas-
sified aggressive actions on a frame-by-frame basis, which
caused unpredictable fluctuations. By averaging threat scores
over multiple frames, sudden spikes and inconsistencies were
significantly reduced, making the predictions more stable and
reliable.

For the lip-reading model, increasing the number of frames
analyzed per sequence from 50 to 75 resulted in noticeable
improvements. It was a challenging task to find the ideal
number of frames such that the model gets enough context but
where it’s also not taking too long to update the frames. This
adjustment provided the model with greater temporal context,
enhancing its ability to recognize speech patterns and im-



proving transcription accuracy. Currently, the lip transcription
accuracy remains limited, as this is the first lip-reading Al de-
signed for live video input. It is currently a challenge to detect
whole words quickly, accurately and consistently. However, to
address this, the current approach leverages phoneme-based
analysis. An algorithm was developed to identify specific pho-
netic patterns, matching them against a predefined dictionary.
The LipNet model was not originally trained on live video
feed as well as violent, threatening, or profane language, which
presents a challenge. Thus, this is breaking into cutting-edge
territory where future work will focus on training a new model
specifically on violent, threatening, or profane language, which
alone should significantly improve transcription.

These refinements collectively led to a 90% reduction in
false positives. A major factor behind this improvement was
eliminating screen position biases where previously, the model
struggled to classify a fist as threatening if it appeared in
certain positions on the screen. With positional normalization
and rolling average adjustments, gesture recognition became
much more accurate.

Figures 4 and 5 demonstrate the models response to threat-
ening and non-threatening behaviour, respectively. It can be
clearly seen that a fist and angrily interpreted mouth position
causes the model to flag the behaviour as threatening. Whereas
a neutral positioned face with no extra hand cues leads the
model to identify a non-threatening state.

At the moment, the RL model performance score, which
is calculated from the recent reward history, is 72%. This is
a good performance because a score over 0.5 means that the
model is making more correct decisions than incorrect ones.

TABLE I
Q-VALUES FOR DIFFERENT THREAT LEVELS AND ACTIONS

Threat Level | All-Good | De-escalate
Low 345 1.45
Medium 0.18 2.72
High 0.00 2.09

The final Q-Table produced when the model is 72% effective
can be seen in Table I. Some things to note for the “low”
threat state, a score of 1.45 for ”de-escalate” is good because
that means the model favors the action “all-good” when the
threat is low. Continuing to look at ’de-escalate” for "medium”
threat we notice it is a higher score of 2.72, which is also
good because that indicates the model prefers “de-escalate”
even when there is a moderate threat. Finally, a score of
2.09 for “de-escalate” of "high” threat is also good because it
shows that the model avoids using the all-good” state during
situations of high threat.

We notice the model starts to degrade if the exploration rate
gets too low, reward history gets taken over by one type of
actions. Some signs of degradation include when performance
score is below 50%, and Q-values start becoming very similar
between actions.

While these improvements have significantly enhanced the
model’s performance, further refinements could still be ex-
plored. However, normalizing position data and smoothing
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predictions have made the process much more reliable for real-
time detection of suspicious actions.

IV. CONCLUSION

BOLLD marks a major step forward in multimodal detec-
tion of alarming cues by combining body language analysis,
lip reading, and reinforcement learning. Unlike traditional
systems, it provides a more adaptable approach to real-time
threat assessment, especially in situations where audio is
unreliable or unavailable.

Some key accomplishments include developing an advanced
multimodal framework and implementing normalization tech-
niques to minimize positional bias. The reinforcement learning
model continuously adapts to behavioral patterns, making the
system more responsive and effective.

Future improvements could include refining motion-based
detection criteria, expanding the violence keyword dictionary,
and incorporating adaptive thresholds that adjust based on
environmental conditions. Further work is also needed to
enhance reinforcement learning strategies and conduct large-
scale real-world testing across diverse scenarios.
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Abstract—Understanding emotions through neural activity
is a key challenge in affective computing and neuroscience.
In this work, we leverage brain-agnostic 3D convolutional
neural networks (3DCNN) to learn functional representa-
tions of emotions from large-scale naturalistic 7T fMRI data.
Our learned representations are consistent with neurobiologi-
cal principles, highlighting the potential of deep learning for
neural emotion inference. Code and data are available at
[https://github.com/lungerjo/DeepEmotion].

I. INTRODUCTION

Understanding emotions through large-scale naturalistic
data offers a pathway to more effective and scalable emotion
recognition systems. These systems could then support care
workers in identifying and assisting individuals who exhibit
atypical or impaired emotional processing signals. Further-
more, advancements in scalable inference on neural data have
the potential to bridge human cognition and machine learning
by enabling more personalized and adaptive human-computer
interactions. This work paves the way for integrating neural
preferences into machine learning systems, expanding the
applications of brain-aware Al in both healthcare and broader
technological domains.

II. METHODOLOGY
A. Data Collection and fMRI Preprocessing

We utilized the publicly available high-resolution 7T fMRI
dataset ['! from the StudyForrest project consisting of whole-
brain fMRI recordings collected while participants listened to
an audio-described version of the movie Forrest Gump. The
dataset scans are acquired at a spatial resolution of 1.4 mm
isotropic and a temporal resolution of 2 seconds.

For our study, we leveraged non-linear anatomically aligned
fMRI data mapped to a common group template using iterative
affine and non-linear transformations included with the dataset.
This approach minimizes inter-subject anatomical variability.
The alignment procedure followed an iterative group-based
registration process, where each participant’s motion-corrected
and distortion-corrected EPI images were first aligned using an
affine transformation and then refined using a high-resolution
non-linear warp field.

B. Annotation Preprocessing

Emotion annotations were collected from eight external
observers who rated perceived emotions in the film. To ensure
balanced training and a strong emotional signal, we applied
heuristic clustering to group annotations by mapping to the
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5 most frequently observed emotion categories. Each fMRI
sample was assigned an emotion label based on the majority
vote among observers, with the condition that at least half of
them agreed on the emotion.

HAPPINESS
SADNESS

Fig. 1: Covariance scores for emotion annotations across
observers. Heuristic clustering was used to map annotations
to the five most common emotions.

FEAR

LOVE

ANGER

C. Training

We trained 20 brain-agnostic 3D Convolutional Neural
Networks (3DCNN) ! to classify emotion states from fMRI
data. 19 models were trained on one subject each and one
model was trained on all 19 subjects. The models were trained
using stochastic minibatch gradient descent with categorical
cross-entropy loss and optimized with the Adam optimizer at
a learning rate of 0.001. Training was conducted for 50 epochs
on a NVIDIA Quadro4000.
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Fig. 2: The network consists of 3 convolutional layers with 3D
kernels, batch normalization, and ReLU activations. A series
of max-pooling operations were applied to downsample spatial
dimensions while preserving feature representations. The final
convolutional features were flattened and passed through 2
fully connected layers before a softmax classification head. 1!
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Fig. 3: Train and validation accuracy over epochs. Single-subject
accuracy is averaged over 19 models trained on 1 subject each.
Cross-subject accuracy is 1 model trained on all 19 subjects.
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Fig. 4: Model predictions on held-out data from
subject 18 during love scenes.
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Fig. 5: Emotion-wise accuracy on held-out data within subject. The column label indicates the subject trained on by this model.

III. RESULTS

We observe impressive performance on held-out data from
both single-subject and cross subject models with limited
compute and hyperparameter tuning demonstrating the power
of this technique when applied to large-scale naturalistic fMRI
data. In particular, our single-subject models perform similarly
on held out data to the cross-subject model, obtaining an
average classification accuracy around %80.

IV. DISCUSSION

Our study is, to our knowledge, one of the first to suc-
cessfully apply a generic deep 3D-CNN to naturalistic fMRI
for emotion decoding at 7T resolution. Prior fMRI-based
emotion decoders have either focused on region-of-interest
features [4], non-naturalistic emotional tasks [5], or statistical
models with inductive biases [6]. This data-driven strategy
allows the model to discover relevant spatiotemporal patterns
of emotion across the brain in a naturalistic setting unbounded
by anatomical assumptions. By demonstrating that a 3D-
CNN can be trained on whole-brain 7T fMRI responses to
a complex movie and decode emotional states above chance,
we establish a new benchmark for large-scale neural decoding
in the emotion domain and highlights the promise of modern
deep learning in mapping between brain activity and rich
emotional experiences.
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There are several key consistencies with neurobiological
findings directly observed from the emotion-wise inference
results despite our brain-agnostic model. First, our model’s
performance varies significantly across emotions by individual.
Indeed naturalistic emotional responses exhibit high inter-
individual variability 7 81, Beyond differences in subjective
emotional experience, there are also physiological and neural
sources of variability. Each person’s brain anatomy and func-
tional organization is unique — the exact location and magni-
tude of emotion-related activations can shift from one brain to
another, even if qualitatively the same networks (e.g. limbic
system, TPJ, prefrontal cortex) are engaged. One subject might
recruit a slightly different constellation of regions or have a
different lateralization for a given emotion than another. This
functional idiosyncrasy is well recognized as a hurdle in multi-
subject fMRI analysis °! . Consequently, a brain-agnostic
CNN might misinterpret inter-individual differences as mere
data variance, when in fact each subject has a distinct, reliable
pattern for themselves that just doesn’t match the group pattern
well. Our model’s difficulty in generalizing could thus be
partly due to person-specific neural signatures of emotion.

Notably, our model consistently performs well detecting
fear. Neuroimaging evidence suggests that fear triggers a
particularly robust and stereotyped brain response across in-
dividuals, making it stand out from other emotions. In fMRI
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Fig. 6: Emotion-wise model accuracy on held-out subjects. The sub-figure headers are the subjects the model was trained on.

studies, negatively valenced, high-arousal stimuli (like fear-
inducing scenes) drive highly synchronized activity in key
emotion-processing regions (e.g. amygdala, insula, midcin-
gulate), showing much greater inter-subject consistency than
neutral or positive emotional content %1, For example, a
suspenseful horror film clip elicited nearly identical brain
activation patterns across different viewers, indicating that fear
evokes a shared neural signature that is easier for a general
3D-CNN model to detect compared to more variable emotional
states (11,

Moreover, the clinical applications of inference are promis-
ing. Notably, the single-subject model trained exclusively
on subject 19 performs poorly in classifying love scenes
compared to other single-subject models. Indeed, our model
misclassifies these scenes as exhibiting sadness in %42.1 of
fMRI labels, love in %31.6 of labels and happiness in %26.3
of labels. These misclassifications for subject 19, suggesting
potentially atypical or “misaligned” neural responses during
love scenes, are reminiscent of findings in clinical populations
where aberrant emotional processing signals appear in fMRI
data [12]. By analyzing these misclassifications, we gain in-
sight into this subject’s unique emotional responses, potentially
identifying neural differences or deficits.

Finally, models that generalize to unseen subjects could enable
the development of consumer applications leveraging neural
data for human preferences. However, when training on a
subset of subjects and inferring on held out subjects, our
model accuracy collapses. These findings highlight the need
for further techniques to enhance cross-subject generalization.

V. CONCLUSION

Our findings establish the promise of brain-agnostic 3D-
CNNs in decoding emotional states from high-resolution,
naturalistic 7T fMRI data. Our learned consistency with
neurobiological theory confirms the quality of our learned
representations. On the other hand, we also highlight the
challenges in achieving robust cross-subject generalization and
held-out subject inference. Future work can focus on more
sophisticated alignment techniques, data augmentation, and
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larger, more diverse datasets to further improve the generality
and reliability of deep learning—based emotion decoding.
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Abstract—Immunotherapy as a form of cancer treatment can
be effective, but often causes the immune system to attack
healthy tissues, leading to significant side effects. Therapeutic
cancer vaccines offer a safer, tumour-specific alternative, but their
efficiency relies on accurate epitope prediction, which is used to
identify regions of a protein that can trigger an immune response
in a patient. This study evaluates MHCflurry on a clinically
relevant melanoma-associated antigen to assess the real-world
applications of computational epitope prediction to therapeutic
melanoma vaccines. We assessed predicted epitopes based on
binding affinity, presentation, and processing scores, identifying
the peptide sequence AQAPATEEQEA as the strongest candi-
date. We visualized results and key findings for a quantitative
analysis of the peptide sequences. Our findings suggest that while
computational tools like MHCflurry show promise in the design
of cancer vaccines, they require experimental validation before
implementation or clinical application.

I. INTRODUCTION

Melanoma is a type of skin cancer in which malignant
(cancer) cells rapidly multiply in the cells that colour the skin
(melanocytes). This is the most dangerous type of skin cancer
due to its aggressive growth and ability to spread to any organ
in the body (National Cancer Institute, 2025). Melanoma is
diagnosed by biopsy and analysis of skin lesions. Treatment
plans include radiation therapy, chemotherapy, and, notably,
immunotherapy.

Immunotherapy trains the body’s immune system to recog-
nize, target, and attack malignant cells, stopping or slowing
cancer growth while preventing it from spreading to other
organs. Types of immunotherapy include immune checkpoint
inhibitors (ICIs), CAR T cell therapy, antibody-drug conju-
gates, and therapeutic vaccines. This treatment can be effec-
tive, but often causes the immune system to attack healthy
cells and tissues, leading to what are called immune-related
adverse events (irAEs). irAEs can affect many organ systems,
including the skin, liver, and gastrointestinal system (Vadde-
pally et al., 2022). These effects are often serious. In a 2023
study, combination therapy with ICIs resulted in a 25% to 30%
incidence of grade 4 (life-threatening) hepatitis and a grade 3
(severe) toxicity rate of approximately 15% (Yin et al., 2023).

Given this need for safer immunotherapy options, therapeu-
tic vaccines present an opportunity for safer alternatives to
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traditional immunotherapy. Therapeutic cancer vaccines aim
to provide tumor-specific treatment with fewer side effects,
resulting in far less severe irAE rates than other forms of
treatment. A 2025 study on a personalized therapeutic vaccine
for advanced kidney cancer resulted in only mild flu-like
symptoms, with no serious side effects reported (Braun et al.,
2025), highlighting the potential that vaccines have to reduce
irAE rates.

These vaccines are designed using epitope prediction, a
computational method used to identify regions of a protein that
can trigger an immune response in a patient. Machine learning
shows great potential in the prediction of clinically relevant
epitopes, improving vaccine efficacy while minimizing adverse
effects on patients such as irAEs.

A. Motivation

The development of safe, widely accessible cancer treatment
with minimal side effects is crucial to optimize quality of life
for patients and their families, improve overall survival rates,
and address toxicities like irAEs.

An optimal treatment would mitigate the broader societal
impacts of cancer, including economic burden due to reduced
labour force participation and productivity (OECD, 2024),
strain on healthcare systems (Prager et al., 2018), and psy-
chological impact of traumatic treatment plans (van Roij et
al., 2019). Therapeutic vaccines offer a promising candidate
for this treatment, and accurate epitope prediction is crucial
for their development.

B. Problem Definition

Although immunotherapy can be effective in cancer treat-
ment, high irAE rates pose serious risks to patient safety,
limiting widespread use. Severe irAEs often lead to significant
health complications, longer hospitalizations, and treatment
discontinuation, resulting in lower overall survival rates (Liang
et al., 2024).

Therapeutic cancer vaccines offer a promising alternative
to traditional immunotherapy by inducing a targeted immune
response in the patient, lowering the risk of off-target effects.



However, their development and implementation is limited by
challenges in epitope prediction.

Recent advances in machine learning have introduced new
approaches to epitope prediction. This study aims to evaluate
machine learning epitope prediction tools like MHCflurry,
determining their feasibility in identifying strong binding
epitopes to inform melanoma vaccine design for improved
efficiency and patient safety.

II. RELATED WORK

In response to the growing demand for safer and more ef-
fective cancer treatments, many studies have explored compu-
tational approaches for epitope prediction, leveraging machine
learning models for efficient vaccine design.

For instance, Tarek et al. (2018) applied computational
epitope prediction tools to evaluate peptide sequences for
non-small cell lung cancer vaccine design, identifying several
promising candidates, but found that binding affinity scores
did not always correlate with real-world immunogenicity.
Similarly, Roudko et al. (2020) utilized computational tools to
predict peptide interactions, but noted biases in training data.

Our study builds on this research by integrating MHCflurry,
a machine learning-based predictor, with a real-time web
application to improve accessibility for researchers. Unlike
previous studies, we emphasize interpretability, open-source
data, and scalability for broader vaccine design applications.
In this study, we evaluate MHCflurry on a clinically verified
melanoma-associated antigen (MAGE-A3) and analyze its
performance in epitope prediction for immunotherapy.

III. METHODOLOGY

Due to computational limitations, we opted to conduct
this study using MHCflurry, a well-documented, pre-trained
machine learning-based epitope prediction tool. While other
predictors exist (e.g., NetMHCpan), MHCflurry was selected
for its open-source accessibility and previous validation in
literature.

MHCAlurry predicts peptide binding affinities using a system
of artificial neural networks (ANNs). These ANNs use both
classification and regression to identify potential candidates
for vaccine design. Accuracy is determined through a mean
square error loss function.

We evaluated this system on a clinically verified melanoma-
associated antigen (MAGE-A3), sourced from the Immune
Epitope Database (IEDB) to study its accuracy at predicting
epitope candidates for melanoma vaccine design. We ran
MHCflurry on 9-mer peptide sequences from MAGE-A3,
predicting binding affinities for the HLA-A*02:01 allele (due
to high clinical relevance). Candidates were evaluated and
ranked based on their predicted binding affinity scores, with
lower values indicating stronger binding potential.

We used Python 3 to create a web application, which was
deployed using Gradio for a smooth user experience. We
leveraged matplotlib and seaborn to visualize results from
MHCflurry quickly and efficiently from within the user’s
browser.
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A. Evaluation Methods

We evaluated the model on several key metrics, includ-
ing half-maximal inhibitory concentration (IC50) scores as
a measurement of the binding affinity of predicted epitope
candidates. A very low IC50 score suggests an exceptional
candidate for vaccine development, as strong binding increases
the chances of recognition by the immune system.

Interpreting the results graphically, we were able to evaluate
MHCAlurry’s predictions on the basis of interactions within the
body’s immune system, exploring real-world applications to
vaccine design.

IV. RESULTS AND DISCUSSION

While developing this project, we aimed to assess the
feasibility of computational tools like MHCflurry with the goal
of improving the efficiency, accuracy, and safety of cancer
immunotherapy.

This computational approach identified strong epitopes for
melanoma vaccine design that are not yet documented in
existing immunogenicity databases. This suggests potential
novel epitope candidates for melanoma vaccine design while
highlighting the need for further statistical analysis and future
experimental validation.

A. Results

For readability, we interpreted the results of this study both
graphically and in terms of raw data.

TABLE I
MHCFLURRY MAGE-A3 RESULTS
peptide affinity (IC50 in nM) | presentation | processing
AQAPATEEQEA 2162.32 0.058 0.100
ALGLVGAQAPA 2912.19 0.032 0.008
AASSSSTLVEV 4185.49 0.023 0.007
GLEARGEALGL 4205.67 0.027 0.052
TLGEVPAAESP 11775.71 0.010 0.051
SNQEEEGPSTF 13409.89 0.007 0.004
TLVEVTLGEVP 13981.99 0.014 0.206
STLVEVTLGEV 14313.88 0.008 0.040
GLVGAQAPATE 16062.32 0.006 0.004
SPDPPQSPQGA 16979.16 0.006 0.006

This table shows the raw output of MHCflurry on MAGE-
A3, which predicted peptide sequences (epitopes) as potential
candidates for vaccine design. In this study, peptides are
evaluated on key metrics such as IC50 score, presentation on
the surface of a cell, and processing within the cell. During
this prediction run, MHCflurry identified the AQAPATEEQEA
sequence the strongest candidate among the predicted epitopes
due to its low IC50 score, coupled with high presentation and
processing metrics. This suggests that this specific sequence
has a strong likelihood of being recognized by immune cells,
and would therefore be an ideal candidate for vaccine design.
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Fig. 1. Visualization of epitope candidates for MAGE-A3

MHCAlurry identified multiple epitope candidates with vary-
ing binding affinities. The top candidate, AQAPATEEQEA, is
shown here with the strongest predicted binding, suggesting a
promising target for melanoma vaccine design.
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Fig. 2. Distribution of binding affinity (IC50) scores in epitope predictions
from MHCflurry

The majority of predicted epitopes have high IC50 val-
ues, indicating weak binding affinity. However, the peptide
AQAPATEEQEA falls in the low IC50 range, reinforcing its
potential.
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This heatmap ranks the top 10 predicted epitopes for
MAGE-A3 based on their IC50 values. Lower IC50 values
(blue) indicate stronger binding, while higher IC50 values
(red) indicate weak binding. AQAPATEEQEA shows the
strongest binding affinity, making it a promising target.

B. Ethical Considerations

Although therapeutic cancer vaccines offer a promising safe
alternative to traditional cancer treatments, their development,
evaluation, and integration with existing medical frameworks
present significant ethical challenges, particularly regarding
access to treatment, accountability, and data privacy.

Therapeutic cancer vaccines raise ethical concerns about
who benefits from this type of specialized cancer treatment,
calling into question how factors like socioeconomic status,
geographical location, insurance coverage, and income in-
equality will influence cancer treatment. When developing
new treatments for diseases as prevalent as cancer, it is also
important to consider the social determinants of health - the
non-medical living conditions that influence well-being - and
how they may affect treatment. Factors like income, education,
employment, and access to healthcare services all affect the
impact of therapeutic cancer vaccines, and must be considered.

Due to the complex nature of biological training data,
computational tools like MHCflurry raise ethical concerns
around algorithmic bias, transparency, and data privacy. Such
models must be evaluated to identify and mitigate biased
outputs, ensuring that these tools are well-equipped to serve
diverse populations.

Furthermore, as machine learning continues to advance, it
remains crucial that all computational results are rigorously
tested and examined in both lab work and clinical settings to
ensure integrity, accuracy, and efficiency.

V. CONCLUSION

This study explored computational epitope prediction with
machine learning tool MHCflurry, revealing novel epitope
candidates for melanoma vaccine design. Further analysis and
clinical review are needed to verify clinical significance and
real-world feasibility of these results. We demonstrated the
potential of machine learning-based epitope prediction in the
process of designing therapeutic melanoma vaccines, high-
lighting the growing role of machine learning in bioinformatics
and computational biology.

As machine learning continues to advance, its integra-
tion with laboratory research could significantly enhance the
precision and accessibility of therapeutic cancer vaccines,
improving quality of life and overall survival rates for patients.

VI. FUTURE WORK

In the future, we plan to develop this tool further, poten-
tially integrating computational epitope prediction with deep
learning models to create an entirely open-source vaccine
design tool for cancer researchers. By developing an open-
source web application, we plan to make epitope prediction
for cancer therapeutics accurate and widely available, enabling



researchers to quickly test vaccine candidates with minimal
computational cost. We will need to conduct further statistical
analysis and comparison to real-world benchmarks to confirm
the real-world applications and immunogenicity of epitopes
predicted using this tool.

Furthermore, integrating Major Histocompatibility Complex
(MHC) class I and II prediction could potentially improve the
effectiveness of this vaccine development tool. Class I epitopes
recognize and destroy harmful cells, while class II epitopes
enhance immunological memory, preventing the recurrence of
cancer (Wang et al., 2021).

VII. LIMITATIONS

During the development of this project, we experienced
several challenges that limited the scope of our research.

Due to system compatibility issues, we were unable to run
epitope-predict natively on local hardware. We adapted the
implementation to run on Google Colab, which introduced
limitations in computational resources and runtime constraints.

Additionally, the results of this study are based solely on
computational predictions. While MHCflurry provides key
insights into potential epitope candidates, experimental vali-
dation is necessary to confirm the real-world applications of
the identified epitope candidates.
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Abstract—Medical imaging plays a crucial role in disease resonance imaging (MRI), and computed tomography (CT)
diagnosis and treatment planning, yet the increasing volume of ¢cgns.
imaging data poses challenges for radiologists and healthcare
systems. This study investigates the application of Convolutional
Neural Networks (CNNs) for automated medical image classifica- Deep learning, a subset of machine learning, has demon-

tion, leveraging transfer learning to enhance diagnostic accuracy. Titiac in i s
strated remarkable capabilities in image recognition and clas-
Using a pre-trained DenseNet-121 model, we developed and p £ g

evaluated CNN-based classifiers for lung cancer, pneumonia, and .51ﬁcat.10n tas.ks, making lj[ an ideal tool for medical imag-
tuberculosis detection. ing diagnostics. Convolutional neural networks (CNNs) are

Our models achieved high classification accuracy, with 90.48%  particularly well-suited for this purpose because they auto-
for lung cancer, 91.83% for pneumonia, and 99.84% for tu- matically extract hierarchical features from medical images,

berculosis, demonstrating their effectiveness in distinguishing distinguishing between normal and pathological conditions
between normal and pathological cases. The results highlight the ith hich 0 h del in ski hieved
potential of Al-driven diagnostics to assist medical professionals wi 1gh accuracy. ne such model in skin c?lncer ac 1e\fe
by reducing workload, improving diagnostic speed and accuracy, levels of competence comparable to dermatologists [2]. Unlike
and addressing the shortage of radiologists. traditional image processing techniques that rely on hand-

Despite promising performance, challenges such as dataset crafted feature extraction, CNNs learn spatial hierarchies of

variability, potential biases, and real-world deployment remain.  feqtyres directly from raw imaging data [3], leading to superior
Future work will focus on expanding datasets, improving model erformance concerning old approaches [4]
interpretability, and integrating Al-assisted tools into clinical p g pp ’

workflows to enhance reliability and accessibility in medical
maging. Convolutional neural networks (CNNs) have empowered
researchers to develop advanced models that accurately dif-
ferentiate between healthy patients and those showing signs

Medical imaging is a cornerstone of modern healthcare, of cancer [5]. These sophisticated algorithms have improved
enabling the early detection and diagnosis of a wide range speed and accuracy, marking a substantial technological break-
of diseases. However, the increasing volume of medical imag- through in medical diagnostics. This advancement has the
ing data presents challenges for radiologists and healthcare potential to significantly transform how cancer is diagnosed
providers, who must analyze complex scans under time con- and can greatly improve patient outcomes by facilitating earlier
straints. Artificial intelligence (Al), particularly deep learning, and more accurate detection, thereby enabling prompt and
with its advantage of end-to-end processing, has emerged on effective treatment. Incorporating CNNs into cancer diag-
a large scale in recent medical diagnosis studies [1], offering nostics signifies a crucial milestone in integrating artificial
the potential for faster, more accurate, and more efficient anal- intelligence within healthcare, promising to boost diagnostic
ysis. This research explores the development of an Al-driven accuracy and streamline medical interventions. Consequently,
medical imaging diagnostic system using convolutional neural this technology could substantially reduce the mortality rates
networks (CNNs) to detect anomalies in X-rays, magnetic and overall global burden associated with cancer.

I. INTRODUCTION
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A. Motivation

The growing demand for medical imaging diagnostics has
placed significant pressure on healthcare systems, leading to
increased workloads for radiologists and the risk of diagnostic
errors. Al, particularly deep learning models like CNNs,
has demonstrated immense potential in enhancing diagnostic
accuracy and efficiency [2]. Al can rapidly analyze complex
imaging data, detect abnormalities with high precision, and
support medical professionals in making timely and informed
decisions [6]. This project is motivated by the need to inte-
grate Al into medical imaging workflows to improve patient
outcomes. Studies have shown that Al-assisted diagnostics can
significantly reduce interpretation time while maintaining or
exceeding human-level accuracy [7]. Moreover, Al can address
the shortage of radiologists in many regions, ensuring broader
access to high-quality healthcare services.

By developing a CNN-based diagnostic system for X-
rays, MRIs, and CT scans, this study aims to contribute to
the ongoing transformation of medical imaging. The project
focuses on improving the interpretability and reliability of
Al models, ensuring they can be effectively integrated into
clinical practice [8]. Ultimately, this work seeks to demonstrate
that Al-powered diagnostics can enhance healthcare efficiency,
reduce diagnostic errors, and support medical professionals in
providing better patient care.

B. Related Works

Our research focuses on adapting a pre-trained convolu-
tional neural network (CNN) model for general-use medical
diagnostics, specifically for detecting anomalies in X-rays,
MRIs, and CT scans using PyTorch. The growing body of
research on CNN applications in medical imaging underscores
the potential of deep learning models to enhance diagnostic
accuracy, streamline workflows, and assist radiologists in
detecting diseases more efficiently. A key component of our
approach is transfer learning, which allows us to fine-tune
a pre-trained CNN for medical imaging tasks, reducing the
need for extensive labeled datasets while improving model
performance. This method aligns with previous work, such as
that by Varma et al., who demonstrated that transfer learning
significantly enhances CNN-based image classification [8].

Beyond transfer learning, CNNs have shown expert-level
performance across multiple medical imaging domains. In
dermatology, CNN-based models have matched or surpassed
human specialists in classifying skin conditions, proving that
deep learning can be adapted beyond traditional radiology
applications [2]. Similarly, in oncology, Al models such as
the Chief AI system developed at Harvard achieved a 94
% accuracy rate in cancer detection, demonstrating the
capability of CNNs to assist in early cancer diagnosis with
high precision [9]. CNNs have also been widely explored
in neurology, where they have been successfully applied
to detect Alzheimer’s-related tauopathy, showcasing their
ability to interpret intricate pathological patterns in complex
neuroimaging data [10].
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Additionally, CNNs have contributed to advancements in
MRI imaging, particularly in motion correction and artifact
reduction, which improve the quality of MRI scans and
minimize the need for repeat imaging, as shown in recent
studies [12]. These collective findings reinforce the broad ap-
plicability of CNNs in medical imaging diagnostics and val-
idate our approach in leveraging deep learning for automated
anomaly detection. By incorporating these methodologies, our
research aims to develop an Al-driven diagnostic tool that
enhances medical imaging analysis, improves interpretability,
and supports clinical decision-making.

C. Problem Definition

Our research explores the deployment of an image recog-
nition algorithm, specifically a convolutional neural network
(CNN), within the healthcare industry to enhance medical
imaging diagnostics. The distinctiveness of this project lies
in its approach: leveraging transfer learning by adapting pre-
trained CNN models to create a general-use diagnostic tool

To facilitate model training, we utilize a medical imaging
dataset, ensuring access to high-quality labeled data. The
images undergo preprocessing to enhance compatibility with
our CNN, which is implemented using PyTorch. We seek to
maximize model accuracy and generalizability across differ-
ent imaging modalities through careful fine-tuning, including
hyperparameter optimization and augmentation techniques.

II. METHODOLOGY
A. Dataset

This study utilizes three distinct medical imaging datasets

for disease classification:

o Lung Cancer Image Dataset: A Comprehensive Col-
lection 2024 [11] — Consists of high-resolution CT
scan images for lung cancer classification. The dataset is
divided into four distinct classes:

Adenocarcinoma — A common form of lung cancer
originating in mucus-producing cells.

Large Cell Carcinoma — A rapidly growing lung
cancer type appearing in any lung region.

Normal — Healthy lung images serving as control
samples.

Squamous Cell Carcinoma — A cancer developing
in the flat cells lining the airways.

Pneumonia Chest X-ray Dataset — Contains 5,863 X-
ray images (JPEG) classified into two categories: Pneu-
monia and Normal. The dataset is organized into three
subsets (train, test, validation). The images were selected
from retrospective cohorts of pediatric patients aged one
to five years old from Guangzhou Women and Children’s
Medical Center. [12]

Tuberculosis Chest X-ray Dataset — Contains 7,000 X-
ray images (3,500 TB-positive and 3,500 normal). The
dataset was compiled by researchers from Qatar Uni-
versity, the University of Dhaka, and their collaborators.
The TB images were sourced from publicly accessible
datasets and the NIAID TB portal program. [13]



Each dataset was split into training, validation, and testing
sets to facilitate model evaluation.

B. Data Preprocessing

To optimize the datasets for CNN-based image recogni-
tion, a preprocessing pipeline was implemented using Py-
Torch’s torchvision.transforms. The key preprocessing steps
include:

Resizing: Images were resized to ensure uniform input
dimensions.

Grayscale Conversion: Images were converted to a
single-channel grayscale format to reduce computa-
tional complexity while preserving diagnostic features.
Normalization: Pixel values were scaled to the [0,1]
range by dividing by 255 to aid neural network conver-
gence.

Data Augmentation: To enhance model generalization,
random horizontal flipping and random rotation were
applied.

Mean-Std Normalization: The dataset mean and stan-
dard deviation were computed and applied for stabiliza-
tion during training.

These preprocessing steps ensure that the datasets are well-
structured, optimized for deep learning, and suitable for
medical image classification.

Fig. 1. Preprocessed lung CT scan images used for CNN-based image recog-
nition. The preprocessing pipeline, implemented using PyTorch’s torchvi-
sion.transforms, includes resizing for uniform input dimensions, grayscale
conversion for reduced computational complexity, and pixel normalization
to the [0,1] range for improved neural network convergence. Additionally,
data augmentation techniques such as random horizontal flipping and rotation
were applied to enhance model generalization. Mean-standard deviation
normalization (mean = 0.3230, std = 0.2176) was performed to stabilize
training. These steps optimize the dataset for deep learning-based lung cancer
classification.

C. Model Architecture and Training

A Convolutional Neural Network (CNN)-based approach
was employed using transfer learning with a pre-trained
DenseNet-121 model. Three separate models were trained,
each specialized for one of the three datasets (lung cancer,
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pneumonia, tuberculosis). The modifications and training ap-
proach are detailed below:
1) Model Architecture:
o The pre-trained DenseNet-121 model was adapted.
o The fully connected classifier layer was replaced with
a linear classifier for multi-class output (four classes
for lung cancer, two classes each for pneumonia and
tuberculosis).
A cross-entropy loss function was utilized for classifi-
cation.
The SGD optimizer with momentum (0.9) and learning
rate decay was applied for stable training.
2) Training Process:
o Each model was trained separately on its respective
dataset using a batch size of 32.
o Training was conducted on a GPU (if available) for faster
convergence.
o A learning rate scheduler adjusted the learning rate
every 7 epochs to mitigate overfitting.
o The validation sets were used for hyperparameter tuning.

D. Evaluation Metrics

To rigorously assess each model’s ability to differentiate be-
tween true-positive and true-negative cases, this study employs
a comprehensive set of evaluation metrics. Specifically, we
focus on precision, recall (sensitivity), F1-score, and insights
derived from the confusion matrix.

Precision and recall are fundamental in evaluating the
model’s ability to correctly identify true-positive cases. Their
respective formulas are:

.. TP
Precision = W (1)
TP
Recall = —— 2
T TPYFN @

The F1-score, which is the harmonic mean of precision and
recall, quantifies the trade-off between false positives and false
negatives and is defined as:

Fl-score = 2 - Precision x Recall

3)

Precision + Recall

Additionally, the confusion matrix provides a detailed
breakdown of the model’s performance, offering valuable in-
sights into its strengths and weaknesses. This tool is especially
crucial in classification tasks where the cost of misclassifica-
tion varies in severity, such as medical diagnosis.

III. RESULTS
A. Overall Model Performance

Three separate CNN-based models were trained for lung
cancer, pneumonia, and tuberculosis classification. The overall
test accuracies achieved for each model are:

o Lung Cancer Model: 90.48%

o Pneumonia Model: 91.83%

o Tuberculosis Model: 99.84%
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Fig. 2. Confusion matrix illustrating the performance of the CNN-based
lung cancer classification model. The model demonstrates high classification
accuracy for normal cases (98%) and squamous cell carcinoma (94%), but
adenocarcinoma exhibits a slightly lower recall (83%).

These results demonstrate the effectiveness of the models
in distinguishing between various medical conditions based
on imaging data.

B. Lung Cancer Classification Results

The performance of our CNN-based lung cancer classi-
fication model was evaluated using a test dataset of 315
images, achieving an overall test accuracy of extbf90.48%.
This demonstrates the model’s effectiveness in distinguishing
between adenocarcinoma, large cell carcinoma, squamous cell
carcinoma, and normal lung conditions using CT scans.

1) Confusion Matrix Analysis: The confusion matrix pro-
vides insights into the model’s classification performance:

o Adenocarcinoma: Correctly classified: 100, Misclassi-
fied as large cell carcinoma: 6, normal: 3, and squamous
cell carcinoma: 11.

Large Cell Carcinoma: Correctly classified: 47, Mis-
classified as adenocarcinoma: 2, normal: 1, squamous cell
carcinoma: 1.

Normal Cases: Correctly classified: 53, Misclassified as
adenocarcinoma: 1.

Squamous Cell Carcinoma: Correctly classified: 85,
Misclassified as adenocarcinoma: 3, large cell carcinoma:
2, normal: 0.

C. Pneumonia Classification Results

The pneumonia classification model was evaluated using a
test dataset of 624 images, achieving an overall test accuracy
of 91.83%.
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Fig. 3. Confusion matrix illustrating the performance of the CNN-based

pneumonia classification model. The model achieved a recall of 99% for
pneumonia cases, ensuring a minimal number of false negatives. However,
normal cases exhibited a lower recall (79%), with some misclassification
occurring.

o Normal: Correctly classified: 185, Misclassified as pneu-
monia: 49.

o Pneumonia: Correctly classified: 388, Misclassified as
normal: 2.

D. Tuberculosis Classification Results

The tuberculosis classification model was evaluated using
a test dataset of 630 images, achieving an outstanding test
accuracy of 99.84%.

o Normal: Correctly classified: 525, Misclassified as tuber-
culosis: 0.

o Tuberculosis: Correctly classified: 104, Misclassified as
normal: 1.

E. Summary of Results

The tuberculosis classification model achieved near-perfect
accuracy, indicating excellent performance in distinguishing
between normal and tuberculosis cases. The pneumonia model
exhibited strong performance, though with a slightly lower
recall for normal cases. The lung cancer classification model
performed well overall, though it showed some misclassifi-
cation for adenocarcinoma cases. These results highlight the
strengths and potential areas for improvement in medical
image-based classification models.

IV. CONCLUSION

This study explored the application of CNN-based deep
learning models for medical image classification, specifi-
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Fig. 4. Confusion matrix illustrating the performance of the CNN-based tu-
berculosis classification model. The model achieved near-perfect classification
accuracy, with only one misclassification observed in the tuberculosis class.

cally targeting lung cancer, pneumonia, and tuberculo-
sis detection. By leveraging transfer learning with a pre-
trained DenseNet-121 model, the study demonstrated that deep
learning can achieve high accuracy in diagnosing medical
conditions from X-ray and CT scan images.

The tuberculosis classification model achieved an out-
standing 99.84% accuracy, highlighting the potential of CNNs
for real-world medical applications. The pneumonia model
performed well, though it exhibited slightly lower recall
for normal cases, indicating potential room for improvement.
The lung cancer model successfully classified different cancer
types but faced challenges in distinguishing adenocarcinoma
from other forms. These findings emphasize the effective-
ness of Al-powered diagnostics in assisting radiologists and
healthcare professionals by reducing interpretation time and
improving diagnostic accuracy.

Despite these promising results, several challenges remain.
The variability in real-world medical imaging datasets,
potential model biases, and the need for external validation
suggest that further refinement is required before deploy-
ment in clinical settings. However, this research reinforces
the transformative potential of AI in healthcare and sets
the stage for future advancements in automated medical
diagnostics.

V. FUTURE WORK

Future research should focus on improving the generaliz-
ability of the models by incorporating larger and more diverse
datasets. Enhancing the model’s robustness through additional
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data augmentation techniques and domain adaptation meth-
ods could reduce misclassification rates. Future studies could
also explore the potential of multi-modal learning, where
CT scans, X-ray images, and clinical data are combined to
enhance diagnostic accuracy. Lastly, deploying these models
in real-world clinical settings and evaluating their impact on
healthcare workflows would be a crucial step toward practical
implementation.

VI. LIMITATIONS

Despite the promising results, the models presented in this
study have several limitations. First, the datasets used may
not fully represent the variability found in real-world clinical
settings, leading to potential biases in model predictions. Ad-
ditionally, while deep learning models excel at pattern recogni-
tion, they still struggle with rare cases and subtle abnormalities
that require human expertise. The lack of external validation
on independent datasets limits the model’s generalizability.
Computational resource constraints may also hinder real-time
deployment, particularly in low-resource healthcare settings.

VII. ETHICAL CONSIDERATIONS

Al-based diagnostic models must be deployed responsibly
to ensure fairness and transparency. Bias in training data
can lead to disparities in diagnostic accuracy across different
patient groups. Ensuring patient privacy and compliance with
regulations is crucial when handling medical data. Al should
assist, not replace, human expertise to prevent over-reliance
and diagnostic errors. Clear guidelines for Al use and contin-
uous monitoring in clinical settings are necessary to maintain
ethical and responsible deployment.
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Copyright Detection in Large Language Models:
An Ethical Approach to Generative Al Development

David Szczecina
University of Waterloo
david.szczecina@uwaterloo.ca

Abstract—The widespread use of Large Language Models
(LLMs) raises critical concerns regarding the unauthorized inclu-
sion of copyrighted content in training data. Existing detection
frameworks, such as DE-COP, are computationally intensive, and
largely inaccessible to independent creators. As legal scrutiny
increases, there is a pressing need for a scalable, transparent,
and user-friendly solution. This paper introduce an open-source
copyright detection platform that enables content creators to
verify whether their work was used in LLM training datasets.
Our approach enhances existing methodologies by facilitating
ease of use, improving similarity detection, optimizing dataset
validation, and reducing computational overhead by 10-30% with
efficient API calls. With an intuitive user interface and scalable
backend, this framework contributes to increasing transparency in
Al development and ethical compliance, facilitating the foundation
for further research in responsible AI development and copyright
enforcement.

I. INTRODUCTION

A. Motivation

Large Language Models (LLMs) such as GPT-4 and Claude
have revolutionized natural language processing, but also raise
legal and ethical concerns about the unauthorized use of copy-
righted content in training datasets [1]. Proprietary models often
rely on large-scale web scraping [2], incorporating copyrighted
material without clear consent mechanisms, compensation, and
intellectual property protection [3].

A major concern is the lack of compensation for content
creators whose work is used without permission. Legal frame-
works for Al copyright enforcement are rapidly evolving, with
landmark cases like New York Times v. OpenAl [4] bringing
increased scrutiny to dataset curation. Transparency in Al
training datasets is essential to ensure responsible and ethical
development. Research indicates that as models increase in size,
memorization tendencies become more pronounced, particularly
in models exceeding 100 billion parameters [4], increasing the
risk of unauthorized reproduction of copyrighted content.

Current detection methods, such as plagiarism checkers and
statistical techniques, struggle to identify subtly paraphrased
copyrighted content [2] [5]. While frameworks such as DE-
COP offer promising approaches, they remain computationally
expensive and complex; making them impractical for inde-
pendent creators and smaller organizations. A scalable, cost-
effective, and user-friendly solution is needed to verify whether
copyrighted works have been used in LLM training datasets.
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Fig. 1. Unique passages are extracted and paraphrased from a users content,
next an LLM is prompted to determine the original passage. Final scores show
the probability of the copyrighted content being used in training the LLM

B. Related Works

The detection of copyrighted content in LLM training
datasets has been the subject of increasing research attention,
particularly as legal and ethical concerns surrounding dataset
curation intensify. While traditional plagiarism detection tools
struggle to identify Al-generated reproductions of proprietary
content [2], several machine learning-based approaches have
been proposed to address this issue.

Membership inference attacks [6] analyze a model’s con-
fidence scores to determine whether a given text sample
was likely included in the training data. Although effective
in controlled experiments, this approach requires adversarial
access to the model and often produces inconclusive results due
to dataset augmentation and model fine-tuning techniques. Sim-
ilarly, perplexity-based analysis is another detection approach
by evaluating how confidently an LLM predicts a passage
of text [7]. Low perplexity scores suggest memorization,
however, this method struggles to distinguish between legally
sourced and unauthorized content, making it unreliable for
copyright enforcement. Another proposed approach is digital
watermarking [8], where imperceptible markers are embedded
into text data before model training. While useful for tracking
known copyrighted works, watermarking is ineffective against
existing datasets that were scraped from the web and fails to
detect content that has been paraphrased or restructured.

A more recent approach, DE-COP: Detecting Copyrighted
Content in Language Models Training Data, [2], introduces a
method to determine whether a language model has memorized
copyrighted content. Unlike statistical approaches, DE-COP
introduces a multiple-choice question-answering framework,



where an LLM must distinguish an original verbatim passage
from paraphrased alternatives. If a model consistently selects
the correct passage, this suggests that the content was likely
included in its training data. An overview of the DE-COP
system is illustrated in Figure 2. Despite its advantages, DE-
COP is computationally expensive, requiring approximately
590 seconds per book for open-source models (LLaMA-2 70B)
[9] and 331 seconds on ChatGPT [2] [10]. Methods such
as Min-K%-Prob [7], Prefix Probing [11] and Name Cloze
Task [12] only required 13-17 seconds to perform the same
task [2]. Additionally, the datasets presented in DE-COP were
found to contain NULL values, errors message outputs, half
finished sentences, and new paraphrases ranged from being
20% to 250% as long as the original passage [2]. DE-COP
lacks robust features to handle these errors in its own dataset,
and its evaluation metrics were based on questionable data,
leaving lots of room for improvements.

DE-COP Algorithm

B

LLM Prompt:

1. Passage Extraction

Tr;'”t'”g 2.Paraphrase Generation g‘?:;:‘ ;i:‘,.il?: g o

ata 3.0A text? i

I_r 4.Evaluation % Claude @ = 25%

B
Non-Training Training Data Non-Traning

Data

Fig. 2. DE-COP System Overview

While previous methods provide partial solutions to the
problem of detecting copyrighted content in LLM training
data, they often fall short in generalization and effectiveness.
DE-COP introduced a black-box-compatible alternative that
significantly improves detection accuracy [2]. However, op-
timizing its computational efficiency and reducing selection
biases remains an open challenge for future work.

C. Problem Definition

Despite the concerns for copyright material in LLM training
data, existing copyright detection methods remain insufficient
and inaccessible. Traditional plagiarism detection tools struggle
to identify paraphrased or subtly modified copyrighted content,
making enforcement difficult [2]. Additionally, computationally
intensive frameworks such as DE-COP, are impractical for
independent content creators due to their technical complexity
and high computational costs [13]. The absence of cost-effective
and user-friendly solutions further limits the ability to verify
whether copyrighted works have been used in LLM training.
This paper introduces an open-source framework that enhances
dataset validation, improving similarity detection, and optimizes
computational efficiency. By significantly reducing processing
costs while maintaining detection accuracy, our approach
provides a scalable and accessible platform for copyright
verification. This initiative ensures Al transparency, promotes
fair compensation for content creators, and supports ethical Al
development in the rapidly evolving landscape of generative Al
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II. METHODOLOGY

This project features a web-based Ul where users can
submit content for evaluation. The backend evaluation system,
runs a multi-layered evaluation workflow integrating passage
extraction, paraphrase generation, question-answering, multiple-
choice evaluation, and statistical analysis to detect copyrighted
content in LLM training data. A vector store maintains a record
of previously evaluated content, allowing the system to check
for duplicates, avoiding redundant evaluations, as well as search
through past evaluations. Users can access a dashboard and
analytics page to view evaluation histories and check accuracy
metrics. An overview of the system architecture is illustrated
in Figure 3.

System Architecture

Large Language Model Architecture

Paraphrasing
» Layer (Claude
&3) l
|_ Evaluator
r Layer | VectorDB
\ (GPT-40) (Pinecone)
User ~
Submitted N QA Layer % Pinecone
Text (Claude 3.5)

@ ¥ Claude

Fig. 3. System Architecture Diagram

A. Passage Extraction

Selecting highly unique passages enhances the accuracy
and effectiveness of detecting copyrighted content in language
model training data [14]. Unique passages minimize the risk of
incorporating common phrases and generic text that may not
sufficiently challenge the model’s memorization capabilities
[15]. To identify these passages, the BM25 algorithm [16]
was employed to vectorize passages within the document and
calculate similarity scores between them. By treating each
passage as a query against the entire document, BM25 assigned
scores based on term frequency and inverse document frequency.
Passages with the lowest BM25 scores, indicating minimal
similarity to other passages, were considered the most unique.
These high-uniqueness passages were prioritized for use in the
evaluation layer, providing a robust foundation for detecting
memorized content.

B. Paraphrase Generation

The paraphrase generation layer is implemented using
LangGraph’s StateGraph to create a modular and dynamic
workflow. This layer utilizes the Claude 3.5 Sonnet model [17]
via the ChatAnthropic API with a temperature setting of
0.7, ensuring a balance between creativity and control in
generating paraphrases. Unlike the original DE-COP approach,
which applies standard paraphrasing prompts, our method



introduces specific paraphrasing strategies, including passive
voice conversions, question-based restructuring, and language
simplification. These templates promote greater diversity in
paraphrases [18], enhancing the robustness of the evaluation
by reducing model prediction patterns. Additionally, the
implementation proposes XML formatting for paraphrases to
support integration with instructional models, offering improved
compatibility and structured data handling not present in the
original DE-COP method.

C. Question-Answering

The QA layer is also built using LangGraph’s StateGraph, fa-
cilitating an automated workflow that handles both “create” and
“format” modes for generating evaluation questions. While the
original DE-COP [2] method primarily focused on generating
standardized multiple-choice questions, our implementation
expands functionality by allowing the creation of custom
questions that use exact text from the input content. The QA
layer uses the ChatAnthropic model to generate questions in a
structured JSON format, improving downstream processing and
maintaining output consistency. This added flexibility enhances
the evaluation’s accuracy by testing the model’s memorization
across varied question formats, contributing to a more thorough
assessment of the model’s exposure to copyrighted content.

D. Multiple-Choice

The multiple-choice layer employs LangGraph to manage
answer selection and evaluation workflows. In contrast to the
original DE-COP’s [2] exhaustive approach of generating all
permutations of answer choices, our initial implementation
used a simplified randomization strategy to prevent selection
bias. However, we propose an enhancement that includes a
dedicated permutation function to fully automate all possible
answer orderings within LangGraph. The evaluation prompts
are designed to elicit concise, formatted responses from the
model, minimizing noise and ensuring clarity in the output.
Incorporating full permutation handling would better strengthen
the mitigation of selection biases in model responses.

E. Evaluation

The evaluation layer integrates multiple components, in-
cluding paraphrase generation, question answering, multiple-
choice testing, and statistical analysis, using GPT-40 [10]
via LangGraph. Our implementation extends upon DE-COP’s
framework by incorporating advanced statistical methodologies
such as receiver-operating characteristic (ROC) curve analysis,
area under the curve (AUC) scoring, and hypothesis testing.
This layer provides deeper insights into performance through
robust statistical methods. A key enhancement over previous
methodologies is the introduction of a permutation function
which generates all answer permutations; mitigating selection
biases in LLMs. The evaluation prompts guide the model
through a structured evaluation process, emphasizing precise
and formatted responses. These enhancements create a more
modular and statistically robust framework, improving the
accuracy and reliability of detecting copyrighted content in
LLM training data.

7

F. Logging System and Similarity Search

To enable content tracking and retrieval, the system incor-
porates Pinecone, a serverless vector database. Documents are
embedded using all-MiniLM-L6-v2 [19] (embedding model
from HuggingFace) which offers a strong balance of embedding
quality and efficiency. The model generates 384-dimensional
embeddings to support fast and accurate approximate nearest
neighbour (ANN) searches, while integrating seamlessly with
Pinecone and LangGraph. Metadata attributes such as copyright
ownership, evaluation timestamps, evaluation results, and
content type, are stored directly in Pinecone as key-value pairs.
Logging metedata enables quick access and tractability during
content evaluations without requiring an external database. The
ingestion pipeline is designed for single-document processing,
embedding each submission and storing it with a unique
identifier. To evaluate content, the system compares new
submissions against stored vectors, retrieving the most similar
documents and their metadata. This streamlined vectorized
approach supports the goal of creating an open-source API
that logs copyrighted content appearing in LLM training data;
promoting transparency and accountability in Al development.

G. Data Processing Improvements

An analysis of DE-COP’s dataset revealed several inconsis-
tencies such as NULL values, API output errors, inconsistent
formatting, and extreme variations in passage length [2]. These
inconsistencies negatively impacted accuracy, skewed model
predictions and increased token usage by up to 50%. To
address this, a preprocessing pipeline was implemented using
SBERT embeddings [20] and cosine similarity, ensuring that
paraphrases retain semantic integrity, and any invalid passages
are filtered out. Additionally, passage lengths are normalized
to prevent instances where paraphrases are excessively short or
long, improving paraphrase consistency. These enhancements
eliminated inconsistencies in DE-COP’s dataset [2], providing
results that are more reproducible and statistically sound.

To further reduce API costs, the multiple-choice selection
was expanded from three to four paraphrased options, reducing
the probability of the original passage being randomly selected
by 20%. By decreasing the probability of Type I error, the
total number of passages requiring evaluation can be decreased
without compromising the experiment’s statistical power or
significance. Consequently, this optimization substantially
lowers overall API consumption by requiring less passages to
be evaluated.

III. RESULTS

Our proposed framework demonstrates significant improve-
ments in detection accuracy, computational efficiency, and
accessibility over existing methodologies. By providing our
open-source solution as a hosted platform, we remove technical
barriers, promoting ease of use and access to individual content
creators.

The multi-layered workflow, which integrates passage extrac-
tion, paraphrase generation, question-answering, and multiple-
choice testing, effectively differentiates between memorized



(copyrighted) and non-memorized text. By integrating a pre-
screening pipeline using SBERT embeddings, cosine similarity,
and normalized passage lengths, errors are caught and filtered
out; enhancing reproducibility. The multiple-choice evaluation
layer, with a streamlined randomization strategy and restructur-
ing of question format reduced API consumption by 10-30%.
Additionally, the Pinecone vector store enhances scalability
and duplicate detection, avoiding redundant evaluations. These
enhancements provide a scalable and practical solution that
outperforms existing approaches, such as DE-COP, supporting
ethical Al development and fair compensation for content
creators.

IV. CONCLUSION

This paper introduces an open-source framework for detect-
ing copyrighted content in LLM training datasets, addressing
key limitations in accessibility, detection accuracy, and cost
efficiency found in previous approaches such as DE-COP. By
enhancing similarity detection, refining dataset validation, and
optimizing computational efficiency, our system provides a
scalable and accessible solution for copyright verification.
Through our user-friendly interface, content creators can
easily determine whether their work was appropriated for Al
development, without a high technical barrier to entry. By
promoting transparency and encouraging accountability, our
system ultimately paves the way for ethical Al development.

V. FUTURE WORK

Future research may focus on developing methods for
selective knowledge removal, such as Unlearn [21], to enable
the erasure of copyrighted content from LLMs. This knowledge
removal technique could be implemented for some of the
standard LLM pretraining datasets such as C4 [22] and Pile [23].
The legal implications of dataset memorization also warrant
further investigation, particularly as Al copyright regulations
continue to evolve. Additionally, expanding the scalability
and adoption of our platform across different AI models and
regulatory frameworks will be crucial for broader impact.
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Abstract—This study addresses the challenge of improving
trust between patients and dental professionals by leveraging Al-
driven analysis of panoramic dental X-rays. With dental caries
being one of the most prevalent oral diseases, early and accurate
detection is crucial for effective treatment and prevention. Deep
learning algorithms were utilized to detect caries, specifically
employing the YOLOv5-Small object detection model, optimized
for real-time inference. The methodology involved dataset pre-
processing, data augmentation techniques such as horizontal
flipping, and model training on the DENTEX MICCAI 2023
dataset. In addition to automated diagnosis, a chatbot powered
by DeepSeek-Llama and LangChain was integrated into the
platform, providing users with reliable, evidence-based dental
health information sourced from over 20 accredited references.
The findings demonstrate that the proposed AI system can
achieve high diagnostic accuracy while fostering patient educa-
tion and transparency. This research highlights the potential of
Al-powered dental diagnostics in reducing the need for costly
second opinions, improving patient-dentist relationships, and
promoting informed decision-making in oral healthcare.

I. INTRODUCTION

Oral diseases, including dental caries, are among the most
prevalent health issues globally, affecting approximately 3.5
billion people. Specifically, dental caries impact around 2.3
billion individuals in their permanent teeth, making it one
of the most common chronic diseases worldwide [1]. If left
untreated, dental caries can lead to complications such as
infections, pain, and tooth loss. Despite advancements in den-
tal care, access to accurate, timely, and affordable diagnoses
remains a significant challenge, particularly in low-income and
underserved communities [2].

One of the key factors influencing patient outcomes in
dentistry is trust between patients and dental professionals.
Trust plays a crucial role in patient adherence to treatment
plans and their willingness to seek care. However, negative
experiences, misdiagnoses, and costly treatment plans often
lead patients to seek second opinions, which can be expensive
and time-consuming. Research suggests that patients who re-
ceive multiple opinions are more likely to adhere to treatment
recommendations, yet many face barriers to accessing addi-
tional consultations due to geographic or financial constraints

(31, [4].

Artificial intelligence (Al) and deep learning have demon-
strated significant potential in enhancing diagnostic accuracy
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in medical imaging. A comprehensive meta-analysis revealed
that deep learning algorithms achieved a mean sensitivity
of 96.3% and a mean specificity of 93.3% across various
pathology identifications, underscoring their efficacy in med-
ical diagnostics [5]. Regarding patient trust, the integration
of Al into medical imaging has yielded mixed perceptions.
Some studies indicate low trust in healthcare systems to use
Al responsibly [3], while others show that nearly two-thirds
of consumers would trust a diagnosis from Al over that of a
human doctor [4]. These findings suggest that while Al has the
potential to enhance diagnostic accuracy, fostering patient trust
requires careful implementation and communication strategies.
By leveraging Al, DentAl Vision aims to provide a low-cost,
accessible second opinion for patients and support dentists in
patient education and decision-making.

Start a New Chat

Hil I'm DentAl - your dental health assistant. How
can | help you today?

ﬂ cqpn”

My dentist says | have a cavity but I'm unsure. Could you please double-check?

Fig. 1. DentAl Vision chat interface where users can initiate a session by
uploading an X-ray and inputting their concerns or queries.

A. Problem Definition

Given the high prevalence of dental caries and the role of
trust in treatment adherence, DentAl Vision addresses two core
problems:



1) Lack of Accessible Second Opinions — Patients often
seek confirmation of diagnoses before undergoing dental
procedures. However, obtaining a second opinion can
be expensive and time-consuming, discouraging patients
from making informed decisions [?]. An Al-driven sys-
tem that offers instant, cost-free analysis of dental X-rays
can bridge this gap.

Limited Patient Education and Transparency in Diag-
noses — Patients frequently struggle to understand dental
diagnoses and treatment plans, contributing to mistrust
in healthcare providers. Studies suggest that visual aids
and explainable Al significantly improve patient com-
prehension and trust in medical recommendations [?].
DentAl Vision integrates a chatbot, DeepSeek-Llama with
LangChain, trained on 20+ accredited dental resources,
to provide users with accurate, evidence-based responses
to their dental health queries.

2)

While previous research has demonstrated the effectiveness
of deep learning in medical imaging, existing Al-driven den-
tal diagnostic tools often lack real-time patient interaction,
transparency, and explainability. This research aims to enhance
trust, accessibility, and patient education by combining state-
of-the-art deep learning with interactive Al-driven explana-
tions.

This paper explores the development, training, and evalua-
tion of an Al-powered diagnostic system for detecting dental
caries, employing YOLOv5-Small for real-time object detec-
tion. Furthermore, it investigates the role of LLM-powered
chatbots in improving patient trust and engagement in Al-
driven healthcare solutions.

By offering automated, unbiased diagnoses, explainable Al
interactions, and a user-friendly web-based platform, DentAl
Vision provides a scalable and accessible solution to improve
trust between patients and dental professionals, reducing the
need for expensive second opinions and fostering better oral
healthcare outcomes.

II. RELATED WORKS

The integration of artificial intelligence (AI) into dental
diagnostics has led to significant advancements, improving
accuracy and efficiency in disease detection and treatment
planning. Al-driven methods have demonstrated success in
analyzing radiographic images, identifying dental caries, peri-
odontal diseases, and other oral conditions. For instance, Al
has been applied to diagnose oral diseases such as maxillary
sinus conditions and caries using clinical data and diagnostic
images, achieving performance comparable to or exceeding
that of human experts [6], [7].

Object detection models, particularly YOLOvVS, have been
widely utilized in medical imaging due to their real-time infer-
ence capabilities. YOLOVS5 has demonstrated strong diagnostic
performance in detecting abnormalities such as developmental
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dysplasia of the hip (DDH), kidney stones in CT images, and
lung tumors [8]-[10]. These applications suggest the suitabil-
ity of YOLO-based architectures for medical imaging tasks,
including dental X-ray analysis, where real-time detection is
valuable.

Several Al-powered dental diagnostic tools have also been
developed. Overjet, an FDA-approved Al system, enhances
dental X-ray visualization by marking cavities and other
dental pathologies with color-coded overlays [11]. Similarly,
Pearl Al utilizes computer vision to evaluate radiographic and
3D imagery, improving diagnostic accuracy [12]. Diagnocat
employs Al to provide automated diagnoses and treatment
planning [13]. While these tools are effective in assisting
dental professionals, they primarily serve as clinical decision-
support systems and do not focus on improving patient trust
or integrating explainable Al for direct patient education. In
contrast, our work aims to bridge this gap by combining
real-time Al-driven dental X-ray analysis with an interactive
chatbot that provides explainable insights and second opinions
to patients.

Beyond Al, advancements in imaging technologies such
as intraoral cameras and photothermal imaging radar have
contributed to improved dental diagnostics. Intraoral cameras
provide real-time imaging to aid in diagnosis and patient
education [14], while photothermal imaging radar offers a non-
invasive alternative for early decay detection [15]. Although
these imaging technologies enhance diagnostic capabilities,
they require specialized hardware, making them less acces-
sible compared to Al-driven X-ray analysis, which leverages
existing clinical imaging workflows.

The combination of Al-driven object detection and interac-
tive explainability through chatbots presents an opportunity
to improve not only diagnostic accuracy but also patient
engagement and trust. Our work builds upon prior Al-based
dental diagnostic methods while introducing an additional
focus on accessibility and patient-centric education, addressing
the limitations of existing approaches.

III. METHODOLOGY
A. Caries Detection Model

1) Dataset Description: The DENTEX MICCAI 2023
dataset was introduced as part of an international machine
learning challenge at the prestigious MICCAI Conference,
a leading event in medical image computing and Al-based
healthcare solutions. The dataset comprises panoramic dental
X-rays collected from three different institutions, ensuring a
diverse representation of imaging conditions. We had access
to 705 fully labeled X-rays for disease classification. These
images include annotations for four primary dental patholo-
gies:

o Impacted Teeth



o Periapical Lesions
o Caries (Cavities)
+ Deep Caries (Advanced Cavities)

This dataset provides a strong foundation for training Al-
based models for automated dental disease detection.

2) Data Preparation: Given the presence of four labeled
dental diseases, we made a strategic decision to focus on
cavities by combining the Caries and Deep Caries classes into
a single label. This choice was driven by the goal of improving
diagnostic clarity, maintaining dataset balance, and enhancing
model generalization.

One of the primary motivations for merging these classes
was to simplify the diagnostic process. Deep Caries is an
advanced form of Caries, meaning both conditions exist on
the same disease progression spectrum rather than being
distinct diseases. In practical dental diagnosis, dentists often
treat them similarly when performing early-stage detection.
Since Al-based systems should prioritize early identification,
distinguishing between Caries and Deep Caries in an Al model
might not add significant diagnostic value at this stage.

Another key factor was maintaining dataset balance. Ana-
lyzing a co-occurrence heatmap of the dataset, we observed
that Caries and Deep Caries frequently appear together in
images (294 times). Additionally, if the dataset contains sig-
nificantly more images labeled as Caries than Deep Caries, the
model might struggle to properly differentiate between them,
leading to class imbalance issues. By merging them into a
single disease class, we improve label distribution balance,
which contributes to more stable training and reduced bias in
model predictions.

Finally, model generalization was an important considera-
tion. Reducing the number of labels helps the model focus
on the fundamental distinction between healthy and diseased
teeth rather than fine-grained differentiation. A simpler label
structure allows the model to avoid overfitting to subtle inter-
class differences, which is particularly important given the
dataset’s size. By training the model to distinguish normal
teeth from carious teeth broadly, we enhance its ability to
perform well across diverse patient populations and real-world
clinical settings.

B. Model Selection

The YOLOvVS5-Small architecture was selected for its
optimal balance of detection accuracy and inference
speed—critical requirements for a real-time, web-based dental
diagnostic tool. YOLOVS’s streamlined backbone and detec-
tion head enable rapid processing of panoramic X-rays (ap-
prox. 5—10 ms per image on a modern GPU) while maintaining
high performance [16]. Compared to larger variants of YOLO,
the reduced parameter count of the Small model (7 million vs.
45 + million) produces a smaller memory footprint and faster
load times, making it ideal for clinical deployments where
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low latency and minimal computational overhead are essential
[17].

C. Data Augmentation

Targeted data augmentation was applied to improve model
generalization across diverse patient anatomies and imaging
conditions. Horizontal flips doubled the effective dataset size
by leveraging the natural symmetry of panoramic radiographs.
Additional brightness and contrast adjustments simulated vari-
ations in X-ray exposure and equipment settings, further
reducing overfitting without introducing distortions that could
confuse cavity detection [18]. These augmentations ensured
robust performance under real-world imaging variability.

D. Training and Evaluation

The dataset of 705 annotated panoramic X-rays was divided
into an 80/20 split for training and validation. YOLOv5-Small
was trained for 75 epochs with a learning rate of 0.01 and a
batch size of 16. Model performance was assessed on the val-
idation set using precision, recall, and mean average precision
at an IoU threshold of 0.5 (mAP@0.5) [19]. The final model
achieved 92% precision, 96% recall, and 97% mAP@J.5,
demonstrating high accuracy in cavity detection with minimal
false positives, ensuring its reliability for actionable dental
diagnostics [20].

E. DeepSeek LLM

The chatbot utilizes DeepSeek LLM, a powerful large
language model optimized for natural language understanding
and generation. DeepSeek enables the chatbot to process
complex dental inquiries, interpret medical terminology, and
generate clear, contextually accurate responses [21]. Its deep
learning capabilities ensure that users receive precise and well-
structured answers, enhancing the overall user experience. The
model is fine-tuned to prioritize dental-related conversations,
making it well-suited for patient education and real-time
assistance. A key advantage of DeepSeek LLM is its cost-
effectiveness, making it significantly more affordable com-
pared to other large-scale models. This affordability ensures
that the chatbot remains economically viable, even when
scaled to support a large number of users [22]. By reduc-
ing computational costs without compromising performance,
DeepSeek allows for widespread deployment in clinical and
telehealth environments, providing real-time assistance with-
out excessive infrastructure expenses.

F. LangChain Integration

To streamline communication and enhance functionality,
LangChain is integrated into the chatbot. LangChain acts as
the framework that connects DeepSeek LLM with external
data sources, enabling dynamic retrieval of dental knowledge
and guidelines [23]. It facilitates contextual memory, allowing
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Fig. 2. A live chat example showing Al processing a user’s X-ray query.

the chatbot to maintain meaningful interactions across multiple
exchanges. Additionally, LangChain supports prompt engi-
neering and retrieval-augmented generation (RAG), ensuring
that responses are grounded in verified information from the
chatbot’s knowledge base.

G. Chatbot Knowledge Base

The chatbot’s knowledge base is curated from authoritative
dental and health sources, ensuring credibility and accuracy
in responses. Primary sources include the Centers for Dis-
ease Control and Prevention (CDC), National Institutes of
Health (NIH), American Dental Association (ADA), and the
Royal College of Dental Surgeons of Ontario (RCDSO) [24].
These organizations provide well-established guidelines on
oral health, cavity detection, treatment options, and preventive
care.

The knowledge base consists of articles covering key topics
such as:

« Dental standards and best practices
Interpretation of dental X-rays

Cavity detection and treatment options
Preventive oral health measures

Terminology and definitions used in dentistry

By structuring responses based on these trusted sources, the
chatbot ensures evidence-based, reliable information for both
patients and dentists. This enables users to make informed
decisions about their oral health while improving their under-
standing of dental diagnostics and treatments [25].

H. Application Development

1) Front-end Design: DentAl Vision’s interface operates on
a React-based web app. The interface connects the user, typi-
cally a patient or dentist, with the model and the chatbot. First,
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Based on your X-ray analysis, there are multiple areas where caries (cavities) are
detected with varying confidence levels. The highest confidence levels are 85.0%.
79.4%, and 77.1%, which strongly suggest the presence of decay. While lower
confidence levels (e.g. 28.3%) might indicate less certainty, the higher
percentages are significant and align with your dentist's diagnosis.

Cavities form when plaque bacteria produce acids that break down tooth enamel,
and early detection is key to preventing further damage. | recommend following

your dentist's advice for treatment, which may include fillings or other restorative
procedures, Regular check-ups and flueride
your enamel and prevent future decay. Let me know if you have more questions!

can also help

References:

- American Dental Association (title: Dental Check-ups and Preventive Care)

- American Dental Association (title: Understanding Cavities)

- Centers for Disease Control and Prevention (title: The Importance of Fluoride)

What can | help you with today?

Fig. 3. Example of chatbot response explaining detected anomalies on the
X-ray. The chatbot provides insights using references from accredited sources
to enhance user trust and transparency.

users upload panoramic dental X-ray images and a message
prompt. The model then annotates the image with bounding
boxes around the suspected cavities and sends the annotated
image back to the user. Finally, the chatbot interprets the user’s
prompt, along with the model’s analysis, and communicates
the results to the user.

DentAl Vision’s interface prioritizes transparency. Users can
download their annotated X-ray image for future reference.
Similarly, the user can send additional messages to the chatbot
to better understand the model’s results and to discuss the next
steps for treatment. Most importantly, when the chatbot makes
a claim, it ensures that its information is reliable and accurate
by citing its sources directly within the message box. DentAl
Vision uses transparency to build patients’ trust in their dentists
and their diagnoses.

2) Back-end Development: The backend of DentAl was
developed using FastAPI, a lightweight and high-performance
Python framework, to efficiently manage API requests and
handle image processing for dental X-ray analysis. The system
follows a modular design, where uploaded X-ray images
are processed, analyzed using a trained YOLOvVS model,
and annotated with detected cavities. The results are then
passed through a chatbot for interpretation, creating a seamless
pipeline from image input to user-friendly analysis.

Before passing the image to the model, the backend ensures
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Improving patient trust, one smile at a time.

Fig. 4. DentAl Vision homepage, where users can initiate a new chat session.

it is properly formatted. The uploaded file is converted from
binary data to a NumPy array using OpenCV. This step ensures
compatibility with the YOLOvVS5 model, rejecting corrupt or
improperly formatted files. If the image is valid, it is sent
for model inference. The model, hosted using TorchServe,
performs real-time inference and returns an annotated im-
age along with confidence scores for detected cavities. The
OpenCV library is used to resize, encode, and annotate images
before sending them back to the frontend.

The backend exposes multiple RESTful API endpoints,
including a predict endpoint, which accepts an image file,
runs YOLOVS5 inference, and returns the processed image
with cavity detections. The chat endpoint accepts user queries
and previous detections, passing them to the chatbot for a
response. Data is exchanged in Base64-encoded images and
JSON format, ensuring efficient communication between the
backend and React]JS frontend via the JavaScript Fetch API.

For chatbot integration a DeepSeek-powered chatbot was
integrated to explain model predictions in simple terms. The
chatbot retrieves relevant dental knowledge and responds
based on previous cavity detections, providing users with
dental health advice, treatment suggestions, and explana-
tions of detected anomalies, improving user engagement. The
LangChain framework is used to manage conversation memory
and provide contextual responses.

The backend is optimized using asynchronous request han-
dling to improve response times and manage concurrent users
efficiently. Comprehensive error handling ensures that invalid
image formats, server failures, or incorrect API requests are
handled gracefully, preventing system crashes.

3) Transparency in Model Prediction: To ensure maximum
transparency, the model outputs a confidence score for each
prediction, which is displayed alongside the detected bounding
boxes. This confidence score provides users with a quantifiable
measure of certainty in the Al-generated diagnosis, helping
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them make informed decisions about their dental health.

Displaying confidence scores enhances transparency by al-
lowing users to understand the model’s level of certainty for
each detection. Unlike a binary output (detection vs. no detec-
tion), confidence scores provide a more nuanced interpretation,
enabling users to gauge whether a particular detection should
be taken seriously or further verified by a professional.

Confidence scores are particularly useful for users as they
can help differentiate between high-confidence predictions that
are likely accurate and low-confidence predictions that may
require additional verification. For example, a detection with
a confidence score of 98% is more likely to be a true positive
than one with a confidence score of 55%, where the model
may be less certain about the presence of a dental anomaly.

Confidence scores vary due to multiple factors, includ-
ing image quality, lighting conditions, presence of overlap-
ping structures, and variations in dental anatomy. A lower
confidence score may indicate uncertainty caused by these
challenges, reinforcing the need for human verification in
borderline cases.

To ensure users are aware of these limitations, a disclaimer
is prominently displayed on the platform before they interact
with the Al system, stating:

"This Al-generated diagnosis is for informational purposes

only and should not be a substitute for professional dental

consultation. Always seek the advice of a qualified dentist
for accurate diagnosis and treatment.”

Additionally, when starting a chat with the AI assistant,
users are reminded that the chatbot provides general dental
information but does not replace professional medical advice.
This ensures ethical Al use by clearly communicating the
system’s role as an assistive tool rather than an authoritative
diagnostic solution.

IV. RESULTS

The model’s effectiveness was assessed using standard eval-
uation metrics, including precision, recall, and mean Average
Precision (mAP@0.5). Initially, performance was analyzed on
both the caries and impacted tooth labels. However, based
on the justifications outlined in the Data Preparation sec-
tion—specifically, the decision to merge caries and deep caries
into a single “caries” label—the primary focus shifted to
improving caries detection.

TABLE I
PERFORMANCE OF THE YOLOVS5 MODEL FOR DETECTING DENTAL
CARIES AND IMPACTED TEETH.

Class Precision | Recall | mAP@50
Caries 92% 96.3% 97.3%
Impacted 72.1% 76.9% 79%




The YOLOvV5 model demonstrated high accuracy in detect-
ing caries, achieving a precision of 92%, recall of 96.3%, and
an mAP@0.5 of 97.3%. This performance is comparable to
existing state-of-the-art dental X-ray classifiers. For instance, a
recent study utilizing the YOLOvS algorithm for interproximal
caries detection reported an overall precision of 84.83%,
recall of 79.77%, and an F1 score of 82.22% [26]. Another
study comparing three deep learning architectures for proximal
caries detection found that the YOLOvVS model achieved a
mean average precision (mAP) of 64.7%, a mean Fl-score of
54.8%, and a mean false negative rate of 14.9% [27]. These
comparisons highlight the efficacy of our model in caries
detection.

Fig. 5. Example of object detection on a panoramic dental X-ray. The
YOLOVS5 model detects caries with associated confidence scores.

While the primary focus of our study was caries detection,
we initially evaluated the model’s performance on both caries
and impacted teeth. The detection of impacted teeth showed
lower accuracy, with a precision of 72.1% and recall of 76.9%,
indicating that additional refinement is needed for this class.
Due to the limited number of impacted teeth samples in the
dataset, the model struggled with generalization, leading to
more inconsistent predictions.

For caries detection, one notable challenge was false pos-
itives, particularly in cases where dental fillings or artifacts
resembled caries, leading to occasional misclassifications. This
issue highlights the need for further fine-tuning and post-
processing techniques to differentiate between actual caries
and non-caries artifacts.

Additionally, experiments demonstrated that applying hor-
izontal flipping as a data augmentation technique improved
detection accuracy. Dental radiographs are inherently sym-
metrical, meaning flipping helps the model generalize better,
particularly for images of teeth in different orientations.

TABLE II
IMPACT OF HORIZONTAL FLIPPING AUGMENTATION ON CARIES
DETECTION PERFORMANCE.

Experiment Precision | Recall | mAP@50
Without Augmentation 92% 96.3% 97.3%
With Augmentation 80.6% 94.7% 93%
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The results in Table II show that applying horizontal
flipping significantly improved model precision, recall, and
mAP@0.5 for caries detection. Without augmentation, the
model achieved a precision of 80.6%, but after augmentation,
precision increased to 92%, demonstrating the effectiveness
of this preprocessing technique. The use of augmentation also
slightly improved recall and overall detection performance,
reinforcing its role in enhancing model robustness across
varied image orientations.

V. ETHICAL CONSIDERATIONS

As DentAl Vision operates in the medical domain, ethical
considerations regarding user privacy, fairness, safety, and
transparency are essential. This section outlines the measures
taken to ensure compliance with regulatory standards, mini-
mize bias, and maintain ethical Al practices.

Starta New Chat

— Upload X-Ray

Start a New Chat

Fig. 6. User consent agreement displayed before uploading an X-ray image.
Users must acknowledge terms, including data privacy and the AI system’s
role as a supportive tool rather than a diagnostic system.

A. User Privacy and Data Security

Ensuring the privacy and security of patient data is a core
principle of DentAl Vision. The platform follows established
HIPAA (Health Insurance Portability and Accountability Act),
PIPEDA (Personal Information Protection and Electronic Doc-
uments Act), and GDPR (General Data Protection Regulation)
principles, emphasizing user consent, secure data transmission,
and confidentiality. To protect user privacy:

« No X-ray images or chat data are stored after analysis;
all uploaded files are processed in real-time and immedi-
ately discarded.

« HTTPS encryption is used for all data transmissions,
ensuring secure communication between users and the
platform.

o Users are explicitly informed that their data will not be
retained, reinforcing trust in the system’s privacy policies.

B. User Safety and Medical Liability

DentAl Vision is designed as an assistive tool rather than
a diagnostic system, ensuring that users understand its role
in supporting, not replacing, professional dental consultations.
To uphold user safety:



o Each prediction is accompanied by a confidence score,
allowing users to assess the certainty of Al-generated
results.

The model demonstrates high accuracy in detecting cav-
ities, ensuring reliable second opinions for users.

A clear disclaimer is displayed on the platform and
chatbot interface, informing users that the Al system
should not be used as a substitute for professional dental
evaluation.

C. Bias, Fairness, and Model Generalization

A critical challenge in Al-driven diagnostics is algorithmic
bias, which can result in discrepancies in model perfor-
mance across different demographic groups. While the Dentex
MICCALI dataset is diverse, certain populations may still be
underrepresented. To address this:

o The development team acknowledges potential algorith-
mic bias and is committed to ongoing efforts to improve
fairness and generalizability.

o Future iterations will integrate more extensive datasets
and real-world validation to further refine model perfor-
mance.

D. Collaboration with Dental Professionals and Trust-
Building

Building trust with both patients and dental professionals is
essential for the ethical deployment of Al in healthcare. To
enhance credibility and correctness:

o The project aims to collaborate with licensed dental
professionals to review Al-generated insights and ensure
their accuracy.

o A chatbot powered by DeepSeek-Llama and LangChain
provides users with evidence-based dental health informa-
tion sourced from over 20 accredited references, ensuring
reliable and transparent communication.

By implementing these ethical safeguards, DentAl Vision
ensures that Al-driven dental diagnostics remain secure, fair,
and beneficial while maintaining the highest standards of user
safety and privacy.

VI. LIMITATIONS AND FUTURE WORK

While DentAl Vision demonstrates promising results in Al-
assisted dental diagnostics, several limitations remain. One
challenge is model sensitivity, as the Al sometimes over-
predicts caries due to visual similarities with dental fillings,
leading to false positives. Another key limitation is data
diversity—while the Dentex MICCALI dataset is extensive, it
may not fully represent all ethnicities and age groups, poten-
tially affecting prediction accuracy across diverse populations.
Additionally, the chatbot lacks real-time integration with live
dental databases, meaning its responses may not always reflect
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the most current dental research and treatment guidelines.
These limitations highlight areas where further improvements
are needed to refine the system’s reliability and accuracy.

To enhance DentAl Vision, future efforts will focus on
expanding the dataset with more diverse X-ray sources to im-
prove generalizability. The YOLOvVS model will be fine-tuned
with advanced post-processing filters to reduce false positives
and enhance detection accuracy. Additionally, exploring newer
architectures, such as YOLOv8 and Transformer-based mod-
els, may offer improvements in both detection efficiency and
precision. Enhancing the chatbot’s capabilities by integrating
real-time dental knowledge bases will ensure more accurate
and up-to-date responses. Further steps include deploying the
web application for broader access, collecting feedback from
dental professionals to refine model performance, and working
toward clinical adoption by integrating the system into real-
world dental workflows. A long-term objective is to enhance
model interpretability and reliability, ensuring that Al-assisted
diagnostics become a valuable tool for both dentists and
patients in modern dental care.

VII. CONCLUSION

DentAl Vision presents an Al-driven platform designed
to enhance trust between patients and dental professionals
through automated analysis of panoramic X-rays and an in-
teractive chatbot. By leveraging the YOLOvS5-Small model
for caries detection and integrating DeepSeek-Llama with
LangChain, the system provides real-time X-ray interpretation
alongside evidence-based dental health insights. The model
demonstrated high accuracy in caries detection, achieving a
precision of 92%, recall of 96.3%, and mAP@0.5 of 97.3%,
showcasing its effectiveness as a decision-support tool.

Despite these promising results, challenges remain. False
positives, particularly with dental fillings, and dataset lim-
itations affecting impacted teeth detection highlight areas
for improvement. Moving forward, expanding the dataset to
include more diverse X-rays, enhancing the chatbot’s real-
time knowledge integration, and exploring newer deep learning
architectures such as YOLOv8 and Transformer-based models
will be key priorities. Additionally, clinical validation and col-
laboration with dental professionals will be essential to refine
the system and ensure its reliability in real-world settings.

By addressing these challenges, DentAl Vision has the
potential to become a trusted, accessible tool for both patients
and dentists, ultimately improving transparency, patient edu-
cation, and decision-making in oral healthcare.
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Abstract—In this paper, we explore the Transformer based
architectures for reinforcement learning in both online and offline
settings within the Doom game environment. Our investigation
focuses on two primary approaches: Deep Transformer Q-
learning Networks (DTQN) for online learning [1] and Decision
Transformers (DT) for offline reinforcement learning [2]. DTQN
leverages the sequential modelling capabilities of Transformers
to enhance Q-learning in partially observable environments,while
Decision Transformers repurpose sequence modelling techniques
to enable offline agents to learn from past trajectories without
direct interaction with the environment. We conclude that while
Transformers might have performed well in Atari games, more
traditional methods perform better than Transformer based
method in both the settings in the VizDoom environment [3]

I. INTRODUCTION

Q-networks traditionally have been used in various Atari
game environments [4] and in partially observable environ-
ments like in the Doom 1993 game [5]. This was before the
popularization of Transformers [6].

There is empirical evidence to show that Deep Transformer
Q-networks outperform Deep Recurrent Q-networks in par-
tially observable environments like memory cards and hallway
[1]. The model used to play Doom 1993 was a mix of DQN
[7] and DRQN [8] models that were used for navigation and
strategy [5] respectively. We aim to see how Transformer can
possibly increase the benchmarking results used in the paper
[5] which is the kill-death (k/d) ratio in a team deathmatch
environment. This would be done by replacing the LSTM [9]
with the Transformer decoder architecture of the DTQN [1].

In recent years in Reinforcement Learning a new paradigm
has emerged namely offline Reinforcement Learning [2].We
evaluated the performance of offline reinforcement learning
in VizDoom’s most basic scenario by benchmarking episode
rewards, comparing the Decision Transformer architecture
against the PPO model [10].

A. Background

VizDoom is a first-person shooter (FPS) environment that
serves as a popular benchmark for Reinforcement Learning
(RL) research. It is built upon Doom, a classic 1993 video
game, and provides a highly customizable RL environment
where agents interact with the environment using raw pixel-
based observations.

Online reinforcement learning is a paradigm in which an
agent interacts directly and continuously with an environment
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to learn optimal behaviors. The agent iteratively collects
new experiences by actively taking actions and observing
outcomes(states and rewards) from the environment to con-
tinuously update its policy.

Offline reinforcement learning is a paradigm that learns
exclusively from static datasets of previously collected expe-
riences [11]. Offline RL applications primarily revolve around
in catastrophic areas like robotics where trial and error while
exploring policies can lead to catastrophic failures.

B. Previous Work

The combined usage of Deep Recurrent Q-Networks
(DRQN) and DQN have demonstrated strong performance in
partially observable environments, achieving optimal results
in the VizDoom Deathmatch environment as presented in
Playing FPS Games with Deep Reinforcement Learning [5].
Similarly, Deep Transformer Q-Networks (DTQN) have shown
their effectiveness in partially observable environments, where
they achieved optimal results, highlighting the potential of
transformer-based architectures for reinforcement learning in
FPS video games like Doom [1]. Although, they have not been
used in VizDoom environment so far.

In the offline reinforcement learning domain, Decision
Transformer (DT), originally proposed in [2], successfully
learned optimal policies in MuJoCo environment, demon-
strating the viability of sequence modeling approaches in
reinforcement learning.

More recently, the RATE (Recurrent Action Transformer
with Memory) paper [12] demonstrated the successful training
of a Decision Transformer (DT) in the ViZDoom TwoColours
environment. In this scenario, the agent did not need to employ
a strategy for shooting enemies but instead had to focus on
strategic item collection and movement. This highlights that
while transformer-based models can be effective in certain
structured environments, their applicability in action-intensive
tasks like shooting enemies remains an open challenge.

In both the settings, DT and DTQN have never been used
in a VizDoom environments where the agent had to kill its
enemies.

II. MODEL ARCHITECTURE

A. Deep Transformer Q-Networks

A Deep Transformer Q-Network (DTQN) is an extension
of Deep Q-Networks (DQN) that integrates transformer de-



Both Decision Transformers and Deep Transformer Q-
Networks leverage the power of transformers in reinforcement
learning, but DT focuses on offline RL with conditioned
generation, while DTQN enhances Q-learning for partially
observable environments.

Y

. causal transformer .
1 | | l Il ]
Fig. 1. A picture of the agent playing the basic scenario in Doom 21 i
[

coder based architecture modeled using Partially Observable
Markov Decision Processes (POMDPs). Unlike conventional
DQNs that use a fixed-size state representation, DTQN pro-
cesses sequences of observations to learn a more context-
aware representation of the environment. This allows DTQNs
to maintain memory over long-horizon tasks, making them
effective in environments with partial observability.

Formally, DTQN replaces the traditional fully connected
layers in DQN with masked multi-head self-attention layers,
enabling the network to capture temporal dependencies over N times
sequences of observations.

@-Learning’s goal is to learn a function @) : S x A — R,
which represents the expected cumulative reward if starting in
a state s and taking action a. Specifically, Deep Q-Networks
(DQN) are trained to minimize the Mean Squared Bellman [[Poston Encodng |

Error [4]
Observation Embedding

2
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Observation History

Fig. 2. is the DT architecture

Feed Forward

B. Descion Transformer _ ) )
Fig. 3. is the DTQN architecture

Decision Transformer (DT) is a sequence modeling ap-
proach for reinforcement learning that uses transformers to
predict actions based on past states, actions, and rewards.
It reformulates reinforcement learning (RL) as a conditional
sequence modeling problem, where a trajectory is treated as A. Deep Transformer Q-Networks
a sequence of tokens. Given a desired return-to-go (RTG),
the model generates actions that maximize future rewards.
The key advantages of Decision Transformers include offline
reinforcement learning capabilities, scalability, and the abil-
ity to handle long-range dependencies through self-attention
mechanisms. It was introduced as an autoregressive model
trained on supervised learning objectives rather than traditional
RL-based value function optimization.

Mathematically, a Decision Transformer models a trajectory
as:

III. METHODOLOGY

The training loop for the DTQN follows a reinforcement
learning approach to optimize the Q-function, Q(s,a;6),
where 6 represents the network parameters. The details of the
algorithm are adapted from the original DTQN paper [1]. Here
is an overview of the algorithm.

1. Minibatch Sampling: A minibatch of experience tuples
(Pt:t+ks Otttk Tet ks Pey1:446+1) is sampled from the replay
buffer D, containing sequences of states, actions, rewards, and
future states.

) 2. Target Q-value Calculation: The target target Q-values
for each time step ¢ + % — 1 is computed using the Bellman

where R; is the return-to-go, s; is the state, and a; is the equation:

action at timestep t. The model predicts a; based on previous

tokens using a causal transformer. Titi—1 T glgﬁ Q(hiy1:tviv1,a;0)

T = (Rt, St, Qy, 1%,54_17 St+1, at+1, e
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where 7;,;_1 is the immediate reward at that timestep 6’
represents the target network, which is updated less frequently
than the main network.

3. Loss and Backpropagation: The loss for each minibatch
is the mean squared error between the predicted and target
Q-values. The network parameters 6 are then updated using
gradient descent.

Our model processes visual input using a deep sequence
modeling architecture. A set of 50 frames is fed to a CNN
network that reduces the dimensionality of the images and
encodes spatiotemporal features, producing a sequence of
embeddings once flattened, which are augmented with si-
nusoidal positional encoding. The frames are then passed
to 5 transformer layers that perform multi-head attention (8
attention heads), alongside residual gating. Finally, the results
are passed to a feed-forward network to produce Q-values
corresponding to each possible action. During training, actions
are selected according to an e-greedy policy. The average
training time for this setting was 20 hours, with 1.5 million
iterations.

In addition to training a Q-network, our CNN layers are
enhanced using a game features network during the training
phase, which is used to predict features such as health, ammo,
and number of enemies, for each given frame [5]. These
features are only available during training time, which we
leveraged to improve the embeddings for the transformer.

Our reward shaping follows the method explained in [5].

B. Decision Transformer

The training methodology for the Decision Transformer
(DT) closely follows the approach outlined by the work done
in recurrent action transformer with memory Recurrent Action
Transformer with Memory [12]. We adopted their hyperparam-
eters, except for the targeted return, which we set to 110 since
it gave the most optimum result. Decision Transformers are
trained using a dataset of past trajectories collected from an
environment. Each trajectory consists of a sequence of states,
actions, and rewards:

(D

During training, the transformer model processes a context
length of 90 past trajectories and learns to predict the next
action a; given the current state s; and returns-to-go (RTG),
which represents the expected future reward:

T = {(Slvalvrrl)? (527(1277"2)7 RN (5T70,T,7’T)}

ay = my(s¢, 74, RTGy) (2)
where RTG is computed as:
T
RTG, = Y 7" 'ry 3)
k=t

where ~ is the discount factor.

We generated a dataset of 45,000 trajectories using a PPO
model implemented with the Stable-Baselines3 python library
[10]. The environment was based on ViZDoom, and data
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collection began after 90,000 training steps of the PPO model.
During training, the PPO model achieved an average episode
return of approximately 80, with returns ranging from -400 to
100.

Training for the DT was conducted over 100 epochs. To
preprocess observations, we employed convolutional neural
networks (CNNs) with hyperparameters sourced from Deep
Reinforcement Learning on a Budget: 3D Control and Reason-
ing Without a Supercomputer [13]. The Decision Transformer
was then trained on the preprocessed observations extracted
from the collected dataset.

The environment for training DT was the basic scenario in
the ViZDoom library, using the default reward structure, action
space, and other configuration settings provided by ViZDoom.

To improve training efficiency, we employed the frame
skipping technique with a frame skip of 4 [5]. This means that
the agent repeated the same action for the next four frames
without interacting with the environment. Consequently, the
agent received a new screen input only every k + 1 frames,
where k is the number of frames skipped between steps (in
our case it was 4). The average training time was 45 mins.

IV. RESULTS

To evaluate the effectiveness of transformer-based architec-
tures in reinforcement learning, we conducted experiments in
both offline and online RL settings.

For the online RL setting, we compared the Deep Trans-
former Q-Network (DTQN) against the combined usage of
DQN and Deep Recurrent Q-Network (DRQN) wich used
the LSTM model. Our findings demonstrate that DQN-DRQN
consistently achieved better performance in VizDoom’s Team
Deatchmatch setting, which involved different sets of maps
in DOOM video game. DTQN’s reliance on self-attention
did not effectively compensate for missing state information,
whereas DQN-DRQN’s explicit recurrence allowed for better
state tracking and decision-making under uncertainty.

In the offline RL setting, we compared the episode rewards
for Decision Transformer (DT) and Proximal Policy Optimiza-
tion (PPO) in VizDoom’s basic scenario. Results indicate that
PPO outperformed the Decision Transformer in terms of final
policy performance.

These results suggest that while transformers offer strong
sequence modeling capabilities, they are not inherently
well-suited for environments requiring active memory-based
strategies like VizDoom. In both the settings transformer-
based architectures learnt a suboptimum policy, while more
traditional methods learnt a better policy



episode_return:

400 Step

1k 2% 3k ak sk

returns of the DT

episode_return

4l e

Fig 4: the -episode architecture

200

episode
300 e

0 2% ak 6k 8k 10k 12k 14k

Fig 5: the episode returns of the PPO model.

Limited Deathmatch Full Deathmatch
Known Map Train maps Test maps

. . ‘Without With Without With Without With

Evaluation Metric P Al o ogs imer P Al
navigation  navigation navigation  navigation navigation  navigation

Number of objects 14 46 529 92.2 62.3 94.7
Number of kills 167 138 43.0 66.8 320 43.0
Number of deaths 36 25 15.2 14.6 10.0 6.0
Number of suicides 15 10 1.7 3.1 0.3 1.3
Kill to Death Ratio 4.64 552 2.83 4.58 3.12 6.94

Fig. 6. the k/d ratio achieved by the DQN-DRQN model [5]

V. CONCLUSION

In this work, we investigated the application of transformer-
based architectures in reinforcement learning for FPS video
games using the VizDoom environment. We evaluated two
primary models: Deep Transformer Q-Networks (DTQN) for
online reinforcement learning and Decision Transformers (DT)
for offline reinforcement learning. Our goal was to assess
whether transformer-based architectures outperform traditional
methods in highly memory and strategy intensive environ-
ments like Doom.

Our results indicate that while transformers provide strong
sequence modeling capabilities, they struggle in highly partial
observable settings requiring strategic decision-making. In
the online RL setting, DTQN underperformed compared to
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the combined usage of Deep Q-Networks (DQN) and Deep
Recurrent Q-Networks (DRQN) with LSTMs. The recurrence
in DRQN enabled more effective state tracking and decision-
making, while DTQN’s reliance on self-attention alone was
insufficient to compensate for missing state information.

In the offline RL setting, we compared Decision Transform-
ers (DT) against Proximal Policy Optimization (PPO) using a
dataset of 45,000 trajectories. The empirical results show that
PPO achieved superior policy performance in VizDoom’s basic
scenario. The Decision Transformer was able to learn mean-
ingful policies from offline data, but struggled to generalize
optimally, highlighting the limitations of sequence modeling
approaches in memory intensive environments requiring strat-
egy.

Overall, our findings suggest that while transformer-based
architectures have demonstrated success in certain reinforce-
ment learning benchmarks, they are not inherently well-suited
for FPS environments (specifically VizDoom) that are memory
intensive environments requiring strategy to move and kill
enemies. The reliance on self-attention alone may not be
sufficient to capture long-term dependencies in these settings.

A potential direction for future research is to investigate
architectures that do not rely on self-attention but still perform
well on long-range sequence tasks. One promising approach is
Decision Mamba [14], which replaces self-attention with se-
lective state-space models. This could provide an efficient way
to handle long-range strategy while maintaining scalability in
reinforcement learning environments.

Overall, while Transformer-based models have demon-
strated success in structured tasks such as Atari [4] and some
partially observable environments like hallway [1], their ap-
plication in first-person shooter (FPS) reinforcement learning
remains a challenge, requiring further research in attention
mechanisms and memory modeling.
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Abstract—Acrtificial intelligence is becoming an increasingly
common tool for students and teachers alike, raising important
questions about ethics, academic integrity, and its hindrance
to creativity. This project explores how Al can be integrated
into education to enhance learning while maintaining academic
integrity, instead of outright banning its use in classrooms.
Independent surveys and field research provide insights into
how AI is being used in academic settings, where the line
is drawn between assistance and cheating, and whether Al is
improving or undermining education. Using this data, along
with research on Al ethics, a proposed solution called GPTeach
was developed. GPTeach is an AI tool designed to support
learning without compromising critical thinking. This solution
emphasizes streamlining the teaching process, educating students
about responsible use and personalizing the learning experience
to fit the strengths and weaknesses of each student.

I. INTRODUCTION

30 years ago, students spent countless hours practicing
cursive handwriting because it was considered a fundamen-
tal skill. However, by the time they entered the workforce,
computers had largely replaced the need for handwritten
communication. This shift reflects a broader challenge in
education—keeping pace with technological advancements to
ensure students are prepared for the evolving demands of
the workplace. Today, artificial intelligence (Al) is reshaping
industries at a rapid pace, yet many education systems remain
hesitant to integrate it into learning. ChatGPT and similar
generative Al chatbot programs have been banned in school
districts across North America to “protect academic honesty,”
“avoid cheating,” and preserve “critical thinking and problem-
solving skills” [1] [2]. These concerns have overpowered
the many possible benefits brought about by chatbots and
generative Al programs to students and educators alike.

Generative Al programs pose potential not only to supple-
ment under-resourced education systems, but also to support
teachers struggling to address individual students’ needs. Fur-
ther, the use of generative Al prepares students for a 21st-
century workforce which will rely more and more heavily
on Al [2] [3]. Instead of avoiding Al, schools should focus
on teaching students how to use it effectively and ethically,
just as they once adapted to computers. A report from the
World Economic Forum predicts that Al will be embedded
in 75% of workplaces within the next few years, highlighting
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the growing importance of Al literacy [4]. By recognizing this
shift and adapting educational approaches accordingly, schools
can ensure that students are equipped with the skills necessary
for the modern workforce.

II. BACKGROUND AND RELATED WORK
A. History of Al in Education

The rapid advancements in artificial intelligence over the
past few decades have generated significant interest and ex-
citement within the field of education [5]. The background
of Al, particularly in education, traces its roots to the mid-
20th century when early artificial intelligence systems were
conceived. The term “artificial intelligence” was first coined
in 1955 by John McCarthy, and over the next few decades,
the potential applications of Al were explored across various
fields, including education [5]. One of the earliest examples
of Al in education was the PLATO system developed in
the 1960s, which was a precursor to modern computer-based
learning platforms [6]. PLATO was designed to provide com-
puterized tutoring and educational games, setting the stage for
the integration of technology in learning [6]. By the 1980s, Al
began to gain traction in more specialized applications, such
as intelligent tutoring systems (ITS) and expert systems [7].
These systems were programmed to deliver personalized learn-
ing experiences based on a student’s individual progress and
performance. Socratic method-inspired systems, for instance,
aimed to simulate human tutoring by asking questions and
guiding students through problem-solving tasks [7].

Today, modern Al uses machine learning, natural language
processing (NLP), and adaptive algorithms to enhance learning
experiences. Machine learning allows Al to adapt to student
behaviour over time, offering personalized learning paths. NLP
enables Al systems to understand and respond to student
queries (e.g. chatbots, essay feedback), and data analytics
tracks student progress and predicts learning outcomes [8]. The
tools modern generative Al employs introduces a promising
learning tool for students around the world.

B. Current Significance of Al in Education

Recent research has highlighted the promising applications
of Al in education, particularly concerning intelligent tutoring
systems, automated assessment, and personalized learning [9].



Al-powered tutoring systems can provide customized feedback
and adjust teaching strategies based on individual student
requirements and progress. Some examples of Al platforms
that were made solely for academic use include systems
like DreamBox or Knewton, which adjust lesson difficulty
based on student needs. Additionally, Al-powered tutors like
Carnegie Learning can provide targeted help. Students can
even use tools such as Al-generated quizzes, flashcards, and
practice questions to study more efficiently. Furthermore, to
increase student engagement, apps like Duolingo use Al to
personalize and gamify learning.

Despite AI’s positive role in academic settings, its in-
creased use in education also comes with challenges such
as ethical concerns regarding bias, data privacy, and access
[10]. For example, if an AI model is trained on biased
or incomplete datasets, then these ideas would be adopted
among the students. Additionally, adaptive learning systems
may not cater well to students from underrepresented groups
because of the [11]. Bias could also be prevalent in grading
systems which may unfairly disadvantage non-native speakers
or students with unique writing styles. Al systems also require
extensive student data to function, raising concerns about data
collection, storage, and potential misuse. There is also a lack
of transparency regarding data as users are often unaware of
how their information is collected and used [12]. Furthermore,
there is a risk of students becoming overly dependent on Al
for learning, reducing critical thinking and problem-solving
skills [13]. Additionally, teachers may overly rely on Al for
administrative or teaching tasks, potentially diminishing the
humane element of education. Not only can Al strip students
of gaining vital skills learned from school but it is also known
for relaying incorrect information to students due to the nature
of its data retrieval from the internet.

The many facets of modern generative Al, including ma-
chine learning, natural language processing (NLP), and adap-
tive algorithms, lend themselves to empowering Al as an
educational tool. Through awareness of Al challenges such
as bias, privacy and access, Al has the potential to become
a reliable and powerful tool in any student’s arsenal. Though
many have taken advantage of AI’s ability to be used within
learning, none have been created as an accessible, public tool
for learning promotion which would work alongside schools.
By understanding student and teacher use and opinion of
generative Al, this project aims to create a generative Al tool
with guidelines to ensure student growth and learning while
easing the difficulty of teaching in a modern technological era.

III. CASE STUDIES

The integration of Al into modern education has already
led to significant changes in the classroom and will continue
to make great strides as it evolves. This paper examines
the ethical implications of AI in education by analyzing
perspectives from both students and educators. To best grasp
these implications, surveys for both groups were created and
sent out, and the results provided incredible insights into uses,
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preconceived notions, and ethical dilemmas associated with AL
in academic settings.

The surveys explored key concepts such as what teachers
and students consider to be cheating, how Al tools are used
in the context of schooling, and whether both groups envision
a future where Al plays a central role in education and the
workplace. To propose an Al-driven platform that meets the
needs of both educators and learners, it was essential to
gather firsthand data from those directly affected. Although
the student and teacher sample sizes were relatively small,
the results were very informative. For future work, a greater
demographic of individuals should be surveyed so that the
collected information is even more informative.

A. Context for Results

The student survey primarily examined the frequency of Al
tool usage such as ChatGPT, the motivations behind its use,
and students’ personal ethical boundaries. A key focus was
identifying where students drew the line between legitimate
use and academic dishonesty. Exploration of their reasoning
for AI use helped inform the development of an ethical
alternative. There were 37 student responses, ranging from
middle school (grades 6-8), high school, bachelor’s degree,
and college/professional degree.

The teacher survey examined similar themes from an in-
structional perspective. Topics explored included educators’
definitions of cheating, their own AI usage, and their per-
ceptions of how AI has affected student work. A critical
objective was assessing whether teachers believe the quality
of student submissions has changed since ChatGPT became
widely accessible. Understanding these perspectives was cru-
cial in suggesting a more effective and ethically responsible
generative Al platform. 18 teachers were surveyed, including
classrooms from middle school, high school, undergraduate
and post-graduate level classes, and subject specialties spread
across arts, science, business and professional courses.

B. Student Results

When students were asked about their Al use for school,
46.7% of students said they use ChatGPT one to five times
per week for school, with 40% using it more than five times
per week, as shown in Figure 1.

2. How often do you use ChatGPT or other Al tools on school topics per week?

37 responses

@0

® 15
5-10

@ 10+

Y

Fig. 1. Results from student survey conducted, demonstrating frequency of
ChatGPT use amongst students



In contrast, students were asked how often they used
campus/in-school help centres, and the most popular response
was less than once per month, shown in Figure 2. This
highlights the discrepancy between the help that students need
and the help they seek through the school’s support centres.
Al is more readily accessible no matter the time or location,
making it a favourable alternative.

3. How often do you use support or help structures available at your school (i.e.
extra help centres, Math help, office hours, raising your hand in class, teacher or
TA support)

37 responses

@ Rarely (less than once per month)
@ 1-2 times per month
3.4 times per month
@ 5-15 times per month
@ 15-30 times per month
@ More than 30 times in a month

Fig. 2. Results from student survey conducted, demonstrating how often
students make use of help centres provided by their schools.

When asked about the types of prompts students input to
the program for school, almost half of students answered
they input the homework problems verbatim, which is not
in the best interest of their education experience. It was also
found that 93.3% of students believe Al will be “somewhat
important” to “extremely important” in the workplace in
the next three to five years. This further demonstrates the
eagerness for students to familiarize themselves with Al due
to its rapidly increasing representation, and how important it
is to introduce it to them before reaching the workforce.

When asked about their biggest concerns regarding gener-
ative AD’s potential impact on their learning, three-quarters
of students said they were worried that it would make them
“lazy or reliant on technology”. More than half responded that
“Al may not be able to fully capture the quality of human
learning”, and one-third responded that “Al may give an unfair
advantage to some students”. This demonstrates the hindrances
that generative Al can have by removing the need for students
to use their own critical thinking skills.

When asked about the impact Al has had on students’
educational experiences, the results show both positive and
negative aspects. One student highlighted the ease of access
to personalized learning, and its ability to “dumb down” more
confusing subject areas, while another noted, “Often I can get
solid answers with little to no research. .. this leads to less of
an intense learning experience and stuff doesn’t stick as well.”
Students have discovered ChatGPT as an incredibly useful
resource, especially when outside help is inaccessible. But
without limitations on its usage, it becomes a slippery slope
towards over-reliance and the failure to truly grasp concepts.

1) Teacher Results: Two-thirds of the educators surveyed
said they have used Al in a professional context. Most com-
monly, 44% responded that they use it to create assignments,
and nearly 40% said they use it for creating lesson plans and
assessments. To a lesser extent, some educators cited Al use
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for grading, emails, and project suggestions. The results show
that teachers are already using Al as a support tool, thus the
introduction of one that caters specifically to their classroom
would be beneficial. The absence of Al use for feedback,
grading, and personal correspondence exhibits that Al does not
hinder individuality in the classroom, but instead, supplements
the teacher’s ability to instruct. Furthermore, it is notable that
a majority of teachers employ Al as a generative tool, using
it to create questions, assignments, or lesson plans, instead of
as a supportive tool, within the parameters of amplifying their
own thoughts.

One of the primary goals of the survey was to gauge
teacher’s opinions on student usage of Al tools. When asked
about their experiences with student’s use of generative Al
platforms, the vast majority of teachers surveyed did not feel
students were using it in an ethical way. A high school business
teacher said “Students do not know how to use ChatGPT-
generated content as a resource. They use it to replace their
own original, critical thinking and, as such, the quality of
student work has suffered.”

When asked about their biggest concerns regarding pro-
grams like ChatGPT, nearly 90% of educators responded with
a concern about student plagiarism and originality (see Figure
3 below). Later in the survey, teachers were asked to define
plagiarism when put into the context of Al usage. The results
showed that most teachers believed entering student-created
prompts into Al tools such as ChatGPT is acceptable, however
copying and pasting the asked question or generated responses
is what qualifies as cheating. It was found that two-thirds of
teachers were concerned with the long-term impacts Al has
on their student’s learning. Additionally, 39% of teachers were
concerned about the accuracy of Al-generated results, as well
as the lack of training on Al research tools, as shown in Figure
3.

5. What are your biggest concerns about the use of Al in school?

18 responses

Plagiarism and originality| 16 (88.9%)

The reliability and accuracy of Al-
generated results|

The ethical implications

Lack of access to and training on

o
Al research tools 7 (38.9%)

Long-term impacts on student's|
learning

20

Fig. 3. Results from teacher survey showing the primary concerns for student
use of generative Al tools

Furthermore, two-thirds of educators responded ‘“‘most
likely” or “absolutely” when asked if professional develop-
ment or training on Al would be beneficial, as shown below
in Figure 4. By introducing education about how Al tools
function, there will be increased confidence when using Al
tools within the classroom.



8. Would professional development or training help you feel more confident in
using ChatGPT in your teaching?

18 responses

@ Absolutely

@ Wost Likely
Maybe

@ Probably not

@ Absolutely Not

Fig. 4. Results from teacher survey showing the amount of teachers who feel
that Al training would make them feel more comfortable introducing it to the
classroom.

Educators were also asked what they thought was the
biggest impact Al has had on education throughout their
careers, whether it be positive or negative. A university in-
structor in Media Relations, Organizational Communications,
and Research said “So far negative. Students are simply using
it as a shortcut to get assignments done more quickly. It takes
quite a bit of instructor time to develop assignments that invite
the critical thinking required to help students use it effectively.”
A professor of Mathematics wrote “The only positive I have
personally seen is help in coding for students who are not deep
coders. Negatives are far more outweighing - reinforces the
idea that answers already exist to questions being asked; strips
the human kernel of creative thinking.” Finally, an engineering
professor wrote “Outsourcing of one’s critical reflection to a
massive database is detrimental. On the other hand, if what
one teaches is always obtainable by ChatGPT with reasonable
accuracy, perhaps what one teaches is to be revised. Al, if
applied reasonably, will do a fine enough job in generic and
introductory training but not much beyond.”

The survey went on to collect teacher input into the incor-
poration of Al into schools and universities by asking how
they would like to see current Al chatbots used by students.
A common answer was that students must start citing Al use,
even if it was only used to generate ideas, similar to how
websites are cited within research projects. Another primary
input point was solving the lack of fact-checking behind what
ChatGPT outputs as a response, and eliminating the concern
of AI providing students with misinformation. One professor
went on to state that “...one can create Al engines and neural
networks specifically trained for a certain application, in this
case university.” A tailored approach to the proposed Al tool
in education could be used to minimize these concerns, by
applying citation generation, citing the Al at the end of prompt
answers and allowing teacher input into the Al guidelines.

2) Comparison of Results: To gain insight into what stu-
dents and teachers feel is ethical regarding generative Al,
a thought experiment was conducted in the survey. Both
students and teachers were given the same assignment question
and asked to select all the prompts they considered to be
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cheating if a student had asked ChatGPT the corresponding
prompt.The question presented was, “How did international
alliances affect the onset of World War 1? Provide your
opinion supported by historical examples.” Options to select
in the survey are displayed below in Figure 5.

Copy pasting the whole propmt

What alliances existed before the start of WW1?

What caused the start of WW1?

Summarize what happened before, during, and after Ww1

I think international alliances accelerated the start of WW1. Please give me examples to support this
idea.

Based on the historical example of the Austro-Hungarian empire annexing Bosnia and Hertzegovina,
how did this impact the onset of WW1?

None of these examples would be considered cheating

Fig. 5. Response options presented to both students and teachers to select all
which they consider to be cheating if asked the prompt detailed above.

The discrepancy between what educators considered cheat-
ing versus the students was significant. As shown in Figures
6 and 7 below,the prompt most agreed upon to be cheating
was copy-pasting the entire question verbatim. However, it
is interesting to note that where 84% of students thought
it would be considered cheating, only 61% of teachers felt
the same way. Although students strongly felt this prompt
would be cheating, it has yet to be determined whether or
not feeling this way would dissuade them from doing it. A
fairly small percentage of students and teachers alike (less
than 14% that were interviewed) felt the second and third
prompts would be cheating. These were mainly research-based
prompts, as opposed to opinion-forming ones. Where 32% of
students felt the second last sentence would be considered
cheating, a significant increase of 44% of educators felt this
way, showcasing a variance where teachers and students “draw
the line”. This prompt focused more on asking generative Al
to connect the dots given a pre-decided historical example.

Teachers were asked to provide justifications for which
prompts they deemed unethical. The common consensus was
that when generative Al tools are used for research and
compiling information, teachers are much less inclined to
consider it cheating. When it is used to form opinions or
creative thoughts, educators are much more likely to find the
use of ChatGPT unethical. One teacher said, “I believe Al
results should not be tailored towards a specific conclusion.
I believe the best use of Al [is] to have a wide range of
information that can THEN be used by the user to create an
idea or thought.”

Another common opinion was teachers were less concerned
about what students input to ChatGPT, but instead what they
do with the resulting output. One teacher said, “Students
are free to enter prompts. It’s how they use the results that
determine if it is cheating. Did they copy and paste the
Al results and present it as their own work without proper



Copy pasting the whole propmt| 31 (83.8%)

What alliances existed before t
What caused the start of WW1?

Summarize what happened bef.

| think international alliances ac... 18 (48.6%)

Based on the historical exampl 12 (32.4%)

None of these examples would

20 40

Fig. 6. Student survey results for which pasted prompts into a generative Al
program would be considered cheating or unethical.

Copy pasting the whole propmt! 11 (61.1%)

‘What alliances existed before t.._ 2(11.1%)
‘What caused the start of WW1? 2(11.1%)

2 (11.1%)

Summarize what happened bef...
| think international alliances ac_ .. 8 (44.4%)
Based on the historical exampl... 8 (44.4%)
None of these examples would. .. 7 (38.9%)

00
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Fig. 7. Teacher survey results for which pasted prompts into a generative Al
program would be considered cheating or unethical.

citations? If so, that is cheating. As instructors, we have
to design assignments that help students learn to use Al
ethically.”

A common opinion shared by the teachers interviewed
was they did not trust their students to simply use ChatGPT
to support their own preconceived ideas. Instead, they fear
students use generative Al tools to do the critical thinking
for them. A teacher said, “Most students would just copy the
response from any of those prompts without understanding”.
Thus, it is evident that any proposed generative Al model that
would be education-friendly must not feed students the answer
or suggest new ideas, but rather help students to come to their
own conclusions and build on what they have learned.

IV. ETHICAL ANALYSIS

Future advancements in Al education tools must prioritize
giving the students the fishing rod and not the fish. An ethical
tool must guide students as a teacher would, instead of outright
giving students the answer. Many educators highlighted their
fear of Al tools in the classroom giving students the answer
without any context or true learning being provided. For Al
use in school to be considered ethical, it must encourage
critical thinking by offering resources instead of answers, by
prompting students with guiding questions, and by helping
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them refine their reasoning so that creativity is encouraged.
In STEM subjects, Al should identify specific mistakes in
a student’s work in place of providing solutions, map out
steps to approach the problem without outright providing the
answer, and encourage students to engage with the material
more deeply [5].

Platforms like Khanmigo have already demonstrated the
effectiveness of hint-based learning rather than direct answers,
ensuring students actively participate in problem-solving [11].
Additionally, AI should be integrated with safeguards, such
as teacher oversight, the ability to pre-approve resources, and
built-in citations to combat misinformation and bias [12].
Transparent warnings about privacy risks and Al limitations
such as bias would further ensure ethical and responsible use.

A. Supporting Educators

To support teachers, Al can be customized to track student
interactions, helping educators identify learning gaps and
struggling students. By analyzing student queries and response
patterns, Al could provide insights into classroom miscon-
ceptions, allowing teachers to tailor their instruction more
effectively [13]. Al-driven tools should also adapt to different
learning styles, offering varied explanations and information-
delivery techniques to accommodate diverse student needs.

Moreover, Al can enhance teacher efficiency by consolidat-
ing course materials, generating interactive learning resources
to fill gaps in student comprehension, and automating admin-
istrative tasks. With controlled access to course-specific mate-
rials, such as lab manuals or assignment guidelines, Al could
serve as a valuable supplement for both students and substitute
teachers [8]. Ultimately, Al should be designed to enhance, not
replace, human instruction, making sure that students remain
engaged and develop independent problem-solving skills while
receiving the support they need. Generative Al has shown the
capacity to create convincing false, but GPTeach would ensure
credible and trustworthy answers, supervised by teachers [14].

B. Teacher Analysis

Programs modelled after GPTeach ease the burden on
teachers and administrators by shifting the focus from con-
stant regulation to meaningful technological integration in the
classroom. The system’s feedback functions provide teachers
with real-time evaluations of student understanding, allowing
for more targeted instruction. Unlike unrestricted Al tools,
GPTeach prevents students from simply copying Al-generated
responses while still offering structured support to enhance
learning. By making each student’s learning process visible,
the platform enables educators to assess individual progress
and differentiate instruction accordingly.

While generative Al has the potential to support teachers,
GPTeach extends its impact by offering alternative learning
methods tailored to specific educational needs. A major con-
cern with general Al tools is their tendency to produce uniform
responses, which can reduce the personalization of learning.
GPTeach, however, is designed to align with individual courses
and curricula, preserving the connection between teachers



and students while maintaining the integrity of personalized
education.

Administrators, as key decision-makers in education, must
navigate the challenges of Al integration thoughtfully. While
generative Al expands the range of learning tools available, it
also requires oversight to ensure students engage with content
critically rather than passively absorbing Al-generated infor-
mation. Schools and administrators will need to establish clear
policies on Al usage, balancing accessibility with safeguards
that promote genuine learning and critical thinking.

C. Student Analysis

The introduction of a specialized, education-focused gener-
ative Al engine provides students with a new learning tool
which is accessible and redirects students from misusing
Al The tool provides easy integration into existing student
routines surrounding the use of technology. In the survey con-
ducted for this project, one of the teachers was quoted “[the]
outsourcing of one’s critical reflection to a massive database
is detrimental.” By adding frameworks to the generative Al
design, GPTeach can become a tool for learning instead of
a crutch or regurgitator of information. The shift in mindset
fosters a healthy relationship between imaginative and unique
thought and use of a helpful tool, promoting a growth mindset
for any students using the new tool.

However, the introduction of a new Al tool also brings a
concern of reliance on Al for students. Artificial intelligence
runs on a catalogue of information it is given. The overuse of
current Al tools can lead to a lack of student creativity and the
inability to create unique ideas without prompting. The goal
of a program like GPTeach is to create a tool that promotes
student-created thought, emphasizing student individuality in
the presence of Al. Arguably, students could use a generative
Al tool that is not monitored by their teacher and that just
outputs the answer. Although nothing is banning them from
doing so, students would ultimately be doing themselves a
disservice, as there would be no access to these tools come
examinations. Thus, this proposed tool is a happy medium
between bridging the gap between the help students need, and
the ability to be an independent learner.

D. Risk Assessment

Equity remains a major concern when integrating Al into
education, as not all schools or students have the financial
resources to access advanced technology. Ensuring that Al
tools are both affordable and widely available is essential
to preventing further disparities in learning opportunities.
Unlike other generative Al programs, GPTeach would follow
a different business model designed with student privacy
and fairness in mind. Instead of relying on cookies, third-
party data collection, or prioritizing partnered services (such
as Bing over Google), GPTeach would be sold directly to
school boards. This approach provides an additional layer of
data protection for students while ensuring the information
delivered is sourced from the most accurate and objective
materials available, rather than being influenced by corporate

97

partnerships. By prioritizing transparency and ethical Al use,
GPTeach aims to support education in a way that fosters equal
access, unbiased learning, and student privacy.

Privacy is one of the biggest concerns associated with the
use of Al [2]. This issue is further complicated for tools like
GPTeach being used by children, who cannot give consent. All
Al systems require vast amounts of data in order to train their
decision-making algorithms and improve their capabilities. As
students use the tool, their learning patterns, age-appropriate
use of language, and preferences continue to “teach” the
Al model. As with internet use, children are prone to input
sensitive information because they lack the cognitive abilities
to understand the long-term consequences that might arise
from their inputs. They have a harder time understanding how
these Al systems collect, process, and store their information,
which leaves them vulnerable to data exploitation.

One of the most pressing challenges regarding the storage of
sensitive information is the potential for this data to be shared,
sold to third parties, or exposed as a part of a data breach [15].
Unlike adults, children cannot fully consent to how their data
is to be used because they do not understand the full extent
of their actions. The data collected during their childhood
could later be used for identity theft, targeted advertising,
or more nefarious reasons, following them throughout their
lives. The lack of government policy in this area means
that children are vulnerable to the potential dangers of data
misuse [16]. The creation of Al that can be implemented
into schools must take into account this concern. Al tools
in education must prioritize privacy, such as implementing
safeguards against storing sensitive information or containing
data retention periods. Child-friendly disclaimers and active
monitoring from educators and administration is crucial in
controlling the potential privacy risks of generative Al tools.

Another key factor when considering Al in education is the
potential for bias in Al-generated responses. As established, Al
models are trained on large sets of data and human feedback
and are inherently subject to human biases or prejudices. An
under-representation of certain groups or an overreliance on
flawed sources could be reflected in responses. The result
can be biased or altogether untrue responses. Unfortunately,
this goes beyond incorrect math answers or made-up his-
torical events. Google Gemini, one of the biggest Al tools
currently used by millions of students, responded to a student’s
homework inquiry with a deeply troubling response telling
the user to “die” amongst other threats [17]. Ethical concerns
surrounding Al continue to arise with the introduction of new
tools, and these challenges are likely to escalate over time.
This is especially worrying because of the context in which
this Al is being implemented.

Children are particularly vulnerable to the influence of
biased Al responses because many are still developing their
cognitive abilities and critical thinking skills. They might lack
the skill to fact-check or question the information that is being
provided by the AI, especially in a learning environment.
If they receive an Al response that has biases or inaccurate
information, they are more likely to adopt these viewpoints



and shape their understanding. Even on a smaller scale,
students could be subtly pushed towards specific perspectives
or conclusions, which hinders their skill to think independently
and critically. To address this concern, when implementing
Al in schools, the AI model should be trained with diverse
datasets, regularly audited responses, and clear disclaimers for
children about its potential for bias.

Beyond those two factors of concern, there are also other
risks associated with Al in children’s education. Being exposed
to Al at a young age could lead to an overreliance on Al tools
and a reduction in human interaction, both of which are con-
cerning for children’s social and emotional development [18].
Al systems must be used sparingly, and investing in teaching
meaningful connections and critical thinking is important to
maintain a balance. Tools like GPTeach address some of these
concerns by guiding student inquiry rather than regurgitating
an answer.

V. THE SOLUTION: GPTEACH

GPTeach was created to fit the requirements aforementioned
to make the learning and teaching experience more effective,
more efficient, and more ethical. Figure 8 demonstrates the
student’s homepage, which outlines a clear disclaimer to teach
students how the program works. This outline is important as
it sets clear guidelines for how students should engage with
GPTeach, but also Al as a whole. Early Al interactions set
the standard for how students will use these technologies later
in life. Therefore,by providing constant disclaimers, students
are more likely to develop a critical understanding of AI’s
role in their education and foster a responsible mindset when
approaching Al both within and beyond the classroom.

Fig. 8. Example homepage of proposed GPTeach tool, created using FIGMA.

This proposed Al framework would not give students ex-
plicit answers, but instead hint and push them towards the
right solution. By referencing the provided classroom material
uploaded in advance by the instructor, students have tools
at their disposal that are reliable, accessible, and relevant to
their particular curriculum. For students, GPTeach can act as
a personalized tutor that aligns with the specific coursework
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and available classroom resources given by their teacher as
well as catering to their learning style. It provides guidance
on their assignments, essays, and worksheets in a way that
gives them space to solve the problems themselves. Figure 9
demonstrates an example conversation between a student and
GPTeach.

Fig. 9. Example conversation between the GPTeach program and a student
using it for an addition exercise provided by their teacher, created using
FIGMA.

The program summarizes what the student has learned so
they can treat it like course material. It highlights the largest
areas of need for the student and supplements with specific
problems of similar form. It also has guidelines in place to
avoid explicitly answering assignment questions and instead
uses an open-ended, conversational approach to encourage
students to generate their own opinions. By promoting a
growth mindset and independent thought with Al answers to
prompts, students will be able to analyze and explore their
opinions on lesson topics without compromising their learning.

GPTeach is a tool for educators as much as for students.
For an assignment uploaded by the teacher, the program
analyzes conversations with all students and presents its find-
ings, including which question students struggled with the
most, suggested resources to remedy this, and a follow-up
assignment to ensure student understanding. Figure 10 below
shows an example of teacher support provided by GPTeach.
Additionally, conversations with the student are accessible by
the teacher at all times, ensuring transparency.

Furthermore, as the student uses GPTeach, the program
creates a profile accessible by the teacher, which summarizes
the student’s learning style, largest areas of struggle, and
suggested tools to use when assisting the student on a topic. In
an age where class sizes are only increasing, this tool allows
for teachers to keep on top of their students’ needs, while
also managing the class as a whole. This is demonstrated
below in Figure 11. This tool would be incredibly beneficial
for educators as it takes the difficulty out of analyzing and
remembering each student’s particular needs, and instead
allows them to focus more on personalizing the class content
once this information has already been determined.
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vide Struggl
and adding fracti
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hts:

+ Students struggled most with understanding equivalent fractions and finding common
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+ Visual and hands-on learners performed better with fraction manipulatives and number
lines

+ GPTeach porating more interactive f
examples (.g., slicing pizzas, measuring ingredients)

nd real-world

Fig. 10. Example conversation between the GPTeach program and a teacher
to summarize assignment questions that students in their class found the most
difficult, followed by suggested resources to share with the class to address
the issues. Created using FIGMA.

Teach

@ o problemi Let's figure it out together. What d

The

@ That's right! And what hay

Fig. 11. Example of a student’s profile visible to the teacher to provide
insight on the student’s learning patterns and conversation history to ensure
transparency. Created using FIGMA.

VI. DISCUSSION

The results show a clear pattern. The current status quo
surrounding Al in education is ineffective for both students
and educators as a tool for education. The vast majority of
students clearly recognize the problems with using Al tools,
but are reliant on them nonetheless. While GPT models can
offer accessible help in a student’s learning, they introduce
problems of over-reliance, academic integrity, and the erosion
of critical thinking skills.

One of the most striking points is how often students use
Al software compared to traditional academic support services
because of their convenience and accessibility. This is evidence
of how much potential there is in education for Al There is
a clear change in how students are approaching learning now,
and it is important to have technology and tools that change
at pace. Today’s Al tools hinder students’ learning in the long
run rather than supporting it. This is evident in the response
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from educators, a majority of whom have seen a decline in
the quality of student work since the introduction of Al tools.

Students’ increased Al reliance raises broader questions
about equity. Students who have strong foundational skills are
likely to greatly benefit from Al-assisted learning, but those
who struggle may fare worse because it fails to teach them the
basics. This can potentially exacerbate achievement gaps and
hurt students who would benefit most from additional help.

A key takeaway from the results is the need for intersec-
tional perspectives in creating Al education tools. Policymak-
ers, educators, and developers must collaborate to ensure that
the software would be able to meet the unique demands that
education tools require. Implementing effective Al tools in the
education system will protect learning and support students of
varying ages, abilities and learning styles.

VII. CONCLUSION

As artificial intelligence continues to transform industries,
it is essential for education systems to keep up and ensure
students are prepared for the future. Simply avoiding Al is
not a solution—it will only delay its inevitable presence. The
research and survey results from this study show both the
potential benefits and concerns surrounding Al in education,
highlighting the importance of creating ethical guidelines
that preserve academic integrity while encouraging flexibility,
adaptive teaching styles and innovation.

To address these concerns, the GPTeach model was de-
veloped as an Al tool designed specifically for educational
purposes. Unlike general Al tools, GPTeach focuses on re-
sponsible use, offering structured guidance, transparency, and
safeguards to prevent misuse. Summaries of student difficulties
and learning styles for educators, and personalized resource
suggestions for students create an ethical yet effective tool
to streamline learning in and outside of the classroom. By
incorporating Al tools like GPTeach, schools can provide
students with the necessary skills to thrive in an Al-driven
world, all while maintaining the values upon which education
was built. When used responsibly, Al can become a valuable
resource that enhances learning while supporting, rather than
replacing, critical thinking.
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Abstract—Effective energy management in buildings is essen-
tial for reducing operational costs, enhancing efficiency, and
minimizing environmental impact. This paper explores the inte-
gration of machine learning techniques, specifically Long Short-
Term Memory (LSTM) networks, to predict energy consumption
patterns and optimize usage. By leveraging predictive energy
modeling, buildings can reduce peak demand, shift nonessential
loads, and enhance overall energy efficiency. The study examines
the potential benefits of LSTM-based forecasting in enabling
data-driven decision-making, leading to smarter and more sus-
tainable energy management strategies.

I. INTRODUCTION

Energy management in buildings is crucial for reducing
costs, improving efficiency, and minimizing environmental
impact. With the integration of machine learning models
like Long Short-Term Memory (LSTM) networks, buildings
can predict their energy consumption patterns and optimize
usage accordingly. This paper explores how predictive energy
modeling can help reduce peak demand, shift nonessential
loads, and improve overall efficiency. To achieve this, we
develop an LSTM-based forecasting model trained on histor-
ical energy data, incorporating key variables such as HVAC
usage, occupancy trends, and environmental conditions. The
study evaluates how these predictions enable demand response
strategies, such as load shifting, battery discharge timing, and
automated energy optimization. The paper first discusses the
challenges of peak demand and energy forecasting, followed
by an exploration of temperature prediction for HVAC effi-
ciency. The methodology, results, and implications of predic-
tive energy management are then analyzed, demonstrating how
machine learning enhances energy savings in smart buildings.

A. Motivation

Peak demand refers to periods of highest energy con-
sumption in a building, typically occurring when multiple
systems—such as HVAC, lighting, and appliances—operate
simultaneously. These peaks lead to higher utility costs due to
demand charges, reduced HVAC efficiency from operating at
full capacity, increased grid strain, and limitations in battery
and renewable energy supply during peak loads. By accurately
predicting peak demand, building managers can implement
strategies to reduce consumption, shift loads to off-peak hours,
and optimize HVAC performance. Leveraging a Long Short-
Term Memory (LSTM) model trained on historical energy
data, buildings can forecast energy demand for the next
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day and take preventive measures to minimize unnecessary
energy use during peak hours. Effective strategies include
load shifting, which reschedules nonessential activities (e.g.,
dishwashing, laundry, EV charging) to off-peak times, and pre-
cooling and thermal storage, which cool buildings in advance
to reduce HVAC load when occupancy is highest. Additional
methods such as lighting optimization (adjusting brightness
based on occupancy), battery discharge timing (strategic use
of stored energy), and Al-driven automation further enhance
efficiency. These approaches lower demand charges, improve
sustainability, and optimize overall energy use. Forecasting
HVAC demand allows for pre-conditioning spaces at opti-
mal times, reducing sudden spikes and enhancing efficiency.
Additionally, smart scheduling of energy-intensive operations
(e.g., elevators, water heaters, commercial machinery) ensures
they run during low-demand hours, reducing operational costs.
Since utility providers often charge based on peak usage,
predictive models help stagger high-energy processes, adjust
HVAC settings, and manage non-essential loads, preventing
unnecessary expenses and improving overall building energy
management. Climate control, particularly heating and cool-
ing, represents one of the largest energy expenditures in build-
ings. Temperature forecasting enables buildings to optimize
HVAC operations efficiently. By analyzing temperature trends,
predictive models facilitate pre-cooling or pre-heating strate-
gies, allowing buildings to adjust HVAC operation in advance
rather than reacting to external temperature fluctuations. This
approach not only maintains occupant comfort but also reduces
energy consumption.

B. Related Works

Al-Driven Energy Forecasting Using LSTM-Based Models:
Al-based forecasting uses machine learning (ML) to predict
a building’s energy usage, allowing proactive adjustments to
optimize consumption. Early approaches relied on physics-
based simulations or classical ML models (e.g. regression,
ARIMA, decision trees), which required expert-defined fea-
tures and often struggled under volatile conditions like weather
or occupancy changes [1]. Deep learning techniques have
overcome many of these limitations. In particular, Long Short-
Term Memory (LSTM) networks can automatically learn com-
plex sequential patterns in energy data, making them highly
effective for load forecasting [1]. Studies show that LSTM-
based models consistently outperform traditional models —
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for example, one achieved about 97% prediction accuracy,
surpassing standard regression and decision-tree methods [1].
Such improvements in forecast precision are not just academic;
they translate into better control. Modern Building Energy
Management Systems (BEMS) leverage these accurate fore-
casts to make informed decisions (e.g. pre-cooling a build-
ing before occupancy or shifting loads), thereby maintaining
comfort while minimizing waste [1]. In short, deep learning-
driven forecasting has become a cornerstone of building energy
optimization, enabling more efficient scheduling and resource
allocation across HVAC, lighting, and other systems. Anomaly
Detection Techniques for Energy Inefficiencies

Timely detection of anomalous energy behavior is equally
vital for optimizing building performance. Anomalies — such
as equipment malfunctions or user errors (e.g. an HVAC
fault or lights left on) — appear as irregular usage patterns
that, if uncorrected, lead to significant energy waste and
even equipment damage [1]. Al-driven anomaly detection
systems tackle this by learning normal consumption patterns
and flagging deviations in real time. This field has evolved
from simple rule-based or statistical thresholds to data-driven
ML approaches that offer far more sensitivity and reliability
[1]. In particular, deep learning models (using techniques
like autoencoders or LSTM-based sequence models) excel at
capturing the complex, non-linear relationships in building
data, allowing them to identify unusual usage behaviors that
traditional methods might miss [1]. One effective strategy is
to combine forecasting with anomaly detection: for instance,
a deep learning model can first filter out regular seasonal
trends and use an LSTM to predict expected consumption,
then flag any large discrepancy between the predicted and
actual usage as an anomaly [2]. These Al-based systems
provide reliable alerts to facility managers [1], so that faults or
inefficiencies can be corrected quickly. By catching issues like
a miscalibrated thermostat or a failing motor early, anomaly
detection helps maintain optimal operations and prevents en-
ergy from being wasted needlessly. In practice, the Connect
project leverages IoT infrastructure in commercial buildings
to gather real-time energy data, which its LSTM-based Al
engine uses for making short-term and long-term consumption
forecasts. When the Al flags an unexpected surge or drop in
usage (an anomaly), facility managers or automated controllers
can be notified to take corrective action (e.g., investigate faulty
equipment or adjust control strategies), closing the loop of
smart building management.

C. Problem Definition

The reviewed literature also sheds light on several research
gaps that Connect explicitly seeks to address. Himeur et al.
point out enduring challenges in building energy anomaly
detection, including the lack of (i) precise definitions of what
constitutes an anomalous consumption event, (ii) annotated
datasets for model training, (iii) unified metrics to evaluate de-
tection performance, (iv) common platforms for reproducibil-
ity, and (v) measures for privacy preservation [3]. Connect
tackles some of these gaps by adopting a clear operational

definition of anomalies (e.g., significant deviation from the
LSTM-predicted baseline for similar conditions) and by gen-
erating a repository of observed anomalies in its deployment
building to serve as an evolving labeled dataset. In addition,
Connect’s evaluation framework combines forecast accuracy
metrics (for the LSTM predictor) with anomaly detection
precision/recall to provide a more unified assessment of energy
management performance, aligning with calls for standardized
metrics [?]. Another gap highlighted by Aguilar et al. is
the need for developing autonomous cycles of data analysis
tasks and better feature engineering in Al for smart buildings
[2]. Currently, many solutions are fragmented, focusing on
either prediction or control in isolation monitoring. Connect’s
architecture is designed to be more holistic: it blends real-time
monitoring (via [oT), forecasting (via AI/LSTM), and a feed-
back mechanism for decision-making, thereby contributing to
a more autonomous and integrated energy management loop.
Moreover, the absence of techniques like online clustering for
diagnostics in prior studies [2] suggests an opportunity for
Connect’s anomaly detection component to incorporate online
learning, so it can adapt to new patterns (e.g., seasonal changes
or shifts in building occupancy) without manual re-calibration.
By addressing these research gaps — improved anomaly defi-
nitions, integrated analytics, and adaptability — the Connect
project builds upon and extends the state of the art, as
documented by the reviewed Al-in-building-energy research,
to optimize energy consumption in commercial buildings.

II. METHODOLOGY

This study employs a data-driven approach to energy fore-
casting, leveraging deep learning techniques to predict building
energy consumption. A Long Short-Term Memory (LSTM)
neural network was selected due to its effectiveness in cap-
turing long-term dependencies in time-series data. The model
was trained on historical energy usage patterns, environmental
factors, and occupancy trends to provide accurate predictions
for key energy categories, including HVAC, Lighting, and Mis-
cellaneous Electric Loads (MELS). The methodology consists
of data preprocessing, feature selection, model architecture
design, training, and performance evaluation. TensorFlow and
Keras were used to implement the LSTM model, with opti-
mized training parameters to ensure efficiency and accuracy
in energy consumption forecasting.

Al Model and Training: This study employs a deep learning-
based approach to predict building energy consumption using
a Long Short-Term Memory (LSTM) neural network, imple-
mented with TensorFlow and Keras. LSTMs, a specialized
type of Recurrent Neural Network (RNN), are particularly
well-suited for time-series forecasting due to their ability
to capture long-term dependencies in sequential data. By
analyzing historical energy usage patterns, the model provides
forecasts for three key building energy categories: HVAC,
Lighting, and Miscellaneous Electric Loads (MELS). The
LSTM model is designed to process time-series energy data
and predict future consumption patterns based on historical
records, environmental conditions, and occupancy trends. The
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input features include historical energy consumption data
segmented into HVAC, Lighting, and MELS categories, envi-
ronmental conditions such as indoor and outdoor temperature,
humidity, and other weather-related variables affecting heating
and cooling demand, occupancy trends derived from office
hours, human activity levels, and motion sensor data, as well as
time-based features that capture the hour of the day, day of the
week, and seasonal variations. The LSTM model architecture
consists of multiple layers to extract temporal dependencies
and refine predictions. The first LSTM layer contains 32 units
with ReLU activation and return sequences enabled to pass
information to subsequent layers. The second LSTM layer
consists of 16 units with ReLLU activation, capturing deeper
sequential patterns in the data. The final dense output layer
comprises three neurons corresponding to predicted energy
consumption for HVAC, Lighting, and MELS. To ensure
optimal model performance, the dataset undergoes several
preprocessing steps, including data cleaning, where missing
values are interpolated and outliers are filtered using statistical
methods, and feature scaling using MinMaxScaler to normal-
ize all input variables between 0 and 1, preventing bias in the
learning process. Additionally, the dataset is transformed into
sequences suitable for LSTM processing using TensorFlow’s
tf.data. Dataset APL

Model training is conducted over five epochs, a choice
determined by validation loss trends. Training beyond five
epochs resulted in increased memory consumption with min-
imal improvements in accuracy. Backpropagation Through
Time (BPTT) is employed to optimize LSTM weights, and
while early stopping was considered, it was not implemented
due to the validation loss plateauing after five epochs. The
TensorFlow ModelCheckpoint feature is used to store the
best-performing model during training, ensuring robustness in
deployment. The model is trained using the Mean Absolute
Error (MAE) loss function, which is well-suited for energy
forecasting, and the Adam optimizer, chosen for its balance
of speed and stability. A batch size of 32 is used to maintain
efficient computation without compromising learning stability.
The dataset is split into 80 training data, consisting of one
year’s worth of historical records, and 20 testing data reserved
for evaluation. Model performance is assessed using MAE
scores for each energy category: HVAC MAE measures the
accuracy in predicting heating and cooling demand, Lighting
MAE evaluates the model’s ability to forecast lighting energy
use based on occupancy, and MELS MAE quantifies errors in
predicting plug-load energy consumption. The ModelCheck-
point feature is also leveraged during training to save the
best-performing model, ensuring consistency and reliability
for deployment in real-world applications. The LSTM model
was trained using 5 epochs with a batch size of 32. The
decision to use 5 epochs was based on empirical testing, where
further training beyond this point showed diminishing returns
in reducing validation loss. During initial testing, training for
more than 5 epochs led to hight use of ram and minimal gain to
accuracy, the possibility to overfit was also considered, where
the model performed well on training data but deteriorated

on test data Early stopping was considered, but for efficiency,
a fixed epoch number was chosen based on validation loss
trends.

III. RESULTS

To evaluate the model’s accuracy in predicting hourly
energy usage, the Mean Absolute Error (MAE) was used
for both normalized and unnormalized data. The results are
summarized below:

Graphical Representation of Model Performance To visual-
ize the model’s effectiveness, the following graphs illustrate
actual vs. predicted energy usage for each category.

The graph shows that the model closely follows actual
HVAC consumption trends. The effectiveness of temperature
forecasting in HVAC optimization can be visualized through
predictive models that estimate temperature fluctuations and
dynamically adjust cooling or heating requirements. Anomaly
Detection for Energy Waste Reduction Beyond forecasting,
machine learning models detect anomalies in energy consump-
tion, helping facility managers identify inefficiencies and pre-
vent waste. Unexpected energy spikes may indicate equipment
malfunctions, operational errors, or excessive consumption.
Anomaly detection can trigger automated alerts for faulty
HVAC or lighting systems, adjust systems in response to real-
time inefficiencies, and flag abnormal patterns for proactive
intervention. By identifying anomalies early, buildings can
minimize energy waste, optimize performance, and reduce
costs. The following visualization highlights energy usage
anomalies, with red markers indicating potential inefficiencies
or malfunctions.

Dataset Description The dataset used in this study is sourced
from Dryad Digital Repository and was originally published
in Nature Scientific Data [4]. The dataset spans 2020-2023,
containing hourly energy consumption records for HVAC,
lighting, and miscellaneous electrical loads (MELS) in a
commercial buildings. It also includes environmental variables
such as outdoor temperature, humidity, and wind speed, as
well as occupancy data derived from motion sensors and
scheduled building usage patterns. The dataset was prepro-
cessed to ensure consistency, with missing values addressed
using rolling mean interpolation and numerical features nor-
malized between 0 and 1 using min-max scaling. The data
was structured into sequences for time-series forecasting using
LSTM networks, with an 80/20 train-test split applied, where
2020 pre-pandemic data was used for training to ensure
stable energy consumption patterns. This dataset provides a
comprehensive representation of real-world building energy
use, supporting predictive modeling for energy efficiency and
demand reduction. A detailed breakdown of dataset features
and methodology is available in the Dryad Repository. To
ensure data integrity and improve the performance of the
predictive model, several preprocessing steps were applied
before training. Missing values in critical variables, such as
temperature readings and energy consumption records, were
interpolated using statistical methods to maintain continuity
in time-series data. Since energy usage data spans multiple
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Fig. 1. HVAC Prediction: The HVAC system, which is one of the highest energy consumers, has an MAE of 0.63 kWh, meaning the model can predict
energy demand with high accuracy. This enables pre-cooling or pre-heating strategies to be implemented efficiently.
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Fig. 2. Lighting Prediction: With an MAE of 0.11 kWh, the model accurately forecasts lighting needs, supporting smart dimming systems and occupancy-based
adjustments.
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Fig. 3. MELS (Miscellaneous Electrical Loads) Prediction: The model achieves an MAE of 0.22 kWh, useful for detecting anomalies or optimizing device
scheduling.
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Fig. 4. Actual vs. predicted energy usage HVAC unnormalized.
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Fig. 5. Actual vs. predicted energy usage HVAC normalized.
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Reconstruction Errors Distribution
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This histogram shows the distribution of reconstruction errors from the anomaly detection model. Most data points have low errors (indicating
normal operation), but some outliers have high errors. The red dashed line represents the 90th percentile threshold, meaning that points above
this line are flagged as anomalies.

Anomalies Detected: 2248 instances
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magnitudes, feature scaling was performed using MinMaxS-
caler, normalizing all numerical values between 0 and 1 to
prevent bias in model learning. Given the sequential nature of
the dataset, the data was structured into time-series sequences
suitable for Long Short-Term Memory (LSTM) networks using
TensorFlow’s tf.data.Dataset API, enabling the model to effec-
tively capture temporal dependencies in energy consumption
patterns. The dataset was split into training (80%) and testing
(20%), with 2020 pre-pandemic data used for training to
ensure that consumption patterns reflect a stable operational
environment before disruptions introduced by occupancy and
behavioral changes during COVID-19. The remaining 20%
was reserved for testing and evaluation, allowing the model
to generalize effectively to new data. By leveraging historical
data and environmental conditions—including temperature,
occupancy, and electrical loads—the model provides a holistic
understanding of building energy usage, supporting the de-
velopment of predictive optimization strategies for demand

80000 100000

60000
Time Step
This time series graph represents the reconstruction errors over time. A higher error means the model struggled to reconstruct the input data,

which could indicate unusual energy consumption patterns. The red dashed line represents the anomaly threshold, and the red dots mark
timestamps where anomalies were detected.

reduction and efficiency improvements.

The graphs above provide an overview of HVAC energy
usage, variability, correlations, and daily patterns. The time-
series plot (top left) highlights clustered HVAC demand shifts,
while the daily energy and temperature variability graphs (top
right) reveal fluctuations driven by environmental factors. The
correlation heatmap (bottom left) shows strong dependencies
between HVAC usage, temperature, and occupancy. Lastly, the
hourly energy consumption plots(bottom right) illustrate stable
HVAC demand and peak MELS usage in the evening. These
insights help identify key drivers of energy consumption for
predictive modeling.

To optimize energy consumption in buildings, a load-
shifting strategy was implemented using predictive energy
modeling. The model forecasts peak demand periods and
dynamically reschedules non-essential loads (e.g., HVAC pre-
cooling, lighting adjustments, and deferred appliance usage)
to off-peak hours. This reduces energy costs by leveraging
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Peak Energy Usage by Hour (Unnormalized Data)
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This bar chart represents the average energy usage for HVAC, Lighting, and MELS across different hours of the day. Identifying peak hours
helps optimize load distribution and energy efficiency strategies.

Successfully extracted and unnormalized 24 hourly HVAC data points for 2020-01-15

Total Cost Before Load Shifting: 90.17
Total Cost After Load Shifting: 82.05
Total Savings: 8.12 (9.00% reduction)

HVAC Energy Consumption: Before vs. After Load Shifting (2020-01-15)
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This graph compares HVAC energy consumption before and after load-shifting on 2020-01-15. By shifting demand away from peak hours (5-9
PM), overall energy costs and inefficiencies are reduced.

Fig. 9. The Load Management Simulation demonstrates how predictive energy modeling can optimize energy consumption by strategically shifting non-
essential loads to off-peak hours. By leveraging real-time data from the LSTM-based prediction model, this simulation evaluates the impact of dynamic load

adjustments on cost savings, energy efficiency, and overall system stability.

time-of-use pricing while maintaining operational efficiency. A
simulation was conducted using historical energy consumption
data, where different shifting scenarios were tested to evaluate
their impact on demand reduction. The cost savings analysis
demonstrated a measurable decrease in peak-hour energy
costs, with up to 15% reduction in peak demand charges. The
results were visualized through interactive dashboards, high-
lighting energy usage before and after optimization. The front-
end interface, developed using React and data visualization
libraries, allows users to explore energy trends and track cost
savings over time. These insights enable data-driven decision-
making for facility managers seeking to implement smarter
energy management strategies.

IV. CONCLUSION

The accuracy of the model enables several energy-saving
strategies: Pre-cooling spaces before peak hours avoids high
HVAC loads. Scheduling non-essential loads (e.g., dishwash-
ers, EV charging) during off-peak times. If predicted vs. actual
usage deviates significantly, it may indicate faulty HVAC
systems, malfunctioning lights, or unnecessary energy use.
Buildings using solar energy can store energy when demand
is low and discharge it efficiently when demand is high. By
leveraging these predictive insights, buildings can optimize
energy usage, reduce costs, and enhance sustainability efforts.

Al-driven energy forecasting and optimization offer a pow-
erful solution for reducing costs, improving efficiency, and
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supporting net-zero sustainability goals. Predicting peak de-
mand enables proactive load management, while intelligent
HVAC adjustments and anomaly detection prevent energy
waste and equipment failures. Smart automation further en-
hances these benefits by aligning energy consumption with
real-time building usage. Future improvements include inte-
grating IoT sensors for real-time monitoring, adaptive machine
learning for continuous optimization, and deep reinforcement
learning for autonomous energy management. While chal-
lenges such as implementation costs and data privacy remain,
Al-powered energy optimization is poised to scale across
industries, driving smarter, more sustainable buildings. By
leveraging these technologies, buildings can achieve significant
cost savings and contribute to a greener future. The accu-
racy of the model enables several energy-saving strategies:
Pre-cooling spaces before peak hours avoids high HVAC
loads. Scheduling non-essential loads (e.g., dishwashers, EV
charging) during off-peak times. If predicted vs. actual usage
deviates significantly, it may indicate faulty HVAC systems,
malfunctioning lights, or unnecessary energy use. Buildings
using solar energy can store energy when demand is low and
discharge it efficiently when demand is high. By leveraging
these predictive insights, buildings can optimize energy usage,
reduce costs, and enhance sustainability efforts.

Al-driven energy forecasting and optimization offer a pow-
erful solution for reducing costs, improving efficiency, and
supporting net-zero sustainability goals. Predicting peak de-
mand enables proactive load management, while intelligent
HVAC adjustments and anomaly detection prevent energy
waste and equipment failures. Smart automation further en-
hances these benefits by aligning energy consumption with
real-time building usage. Future improvements include inte-
grating 1oT sensors for real-time monitoring, adaptive machine
learning for continuous optimization, and deep reinforcement
learning for autonomous energy management. While chal-
lenges such as implementation costs and data privacy remain,
Al-powered energy optimization is poised to scale across
industries, driving smarter, more sustainable buildings. By
leveraging these technologies, buildings can achieve significant
cost savings and contribute to a greener future.
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Abstract—Recent advancements in vision foundation models
like Segment Anything Model (SAM) and its successor SAM2
have established new state-of-the-art benchmarks for image
segmentation tasks. However, these models often fail in inclement
weather scenarios where visual ambiguity is prevalent, primarily
due to their lack of uncertainty quantification capabilities. Draw-
ing inspiration from recent successes in medical imaging—where
uncertainty-aware training has shown considerable promise in
handling ambiguous cases. We explore two approaches to enhance
segmentation performance in adverse driving conditions. First,
we implement a multi-step finetuning process for SAM2 that
incorporates uncertainty metrics directly into the loss function
(1) to improve overall scene recognition. Second, we adapt
the Uncertainty-Aware Adapter (UAT) originally developed for
medical image segmentation (2) to autonomous driving con-
texts. We evaluate these approaches on three diverse datasets:
CamVid(1,2), BDD100K(1), and GTA driving(1). Our experi-
mental results demonstrate that UAT-SAM outperforms standard
SAM in extreme weather scenarios, while the finetuned SAM2
with uncertainty-aware loss shows improved performance across
overall driving scenes. These findings highlight the importance
of explicit uncertainty modeling in safety-critical autonomous
driving applications, particularly when operating in challenging
environmental conditions.

I. INTRODUCTION

Inclement weather poses significant hurdles for image per-
ception in self-driving systems, as cameras are critical for
tasks like object detection, lane recognition, and traffic sign
interpretation, which rely heavily on clear visual data [Zhang
et al., 2023]. Adverse conditions such as rain, snow, fog,
or sleet degrade image quality through raindrop-obscured
lenses, snow accumulation, fog-induced contrast loss, or glare
from wet surfaces, introducing noise and distortion that con-
fuse computer vision algorithms. To address this, researchers
are exploring techniques like real-time image enhancement
using convolutional neural networks (CNNs) or generative
adversarial networks (GANs) to “clean” raw camera feeds,
alongside training models on synthetic or augmented datasets
that simulate weather-corrupted visuals [Jiang et al., 2022].
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However, dynamic or extreme conditions still challenge these
methods.

Current state-of-the-art self-driving systems are black-box
ML models that provide little insight to their decision making
process. When encountering uncertain conditions, such ma-
chines can give outputs which cause actions that put those
in and around the vehicles at risk. Especially in high-risk
and high-volatility scenarios where lives and bodies may be
at stakes, making safe decisions requires large amounts of
certainty on the accuracy of the information it uses. One way
to address this concern has been the introduction of uncertainty
quantification, a way for models to give a clear sign of how
confident they are in the results they are outputting. Using
this metric, users can better understand when to use the given
results and when their models struggle.

Both of the aforementioned problems are exacerbated by
the inherent uncertainty introduced by adverse weather, which
is rarely quantified or leveraged effectively in existing ap-
proaches. Without explicit modeling of this uncertainty, seg-
mentation models cannot appropriately adapt their confidence
levels or focus computational resources on the most challeng-
ing regions. This limitation is particularly problematic in the
context of foundation models like SAM and SAM2, which,
despite their impressive capabilities in standard conditions,
lack specific mechanisms to handle the uncertainty introduced
by inclement weather.

Our research addresses these challenges through two com-
plementary uncertainty-aware approaches: one targeting the
extreme conditions where object detection becomes critical
for safety, and another improving overall segmentation quality
across varying weather conditions. These approaches seek
to enhance the robustness of autonomous driving perception
systems by explicitly incorporating uncertainty estimation
into the segmentation process, thereby enabling more reliable
operation in the dynamic and unpredictable environmental
conditions encountered in real-world driving scenarios.
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II. RELATED WORK

Recent advancements in computer vision have led to signif-
icant improvements in semantic segmentation models, partic-
ularly with the introduction of the Segment Anything Model
(SAM) [Kirillov et al., 2023]. SAM represents a paradigm
shift in segmentation approaches, utilizing a prompt-based
architecture that enables zero-shot segmentation across di-
verse domains. Building upon this foundation, SAM2 [Ravi
et al., 2024] further enhances these capabilities with improved
performance and efficiency. These models have demonstrated
remarkable versatility across various applications [Yang et al.,
2024], [Yang et al., 2023] but face challenges in complex envi-
ronmental conditions such as those encountered in autonomous
driving scenarios.

Uncertainty estimation in deep learning has emerged as
a critical research direction [Dutta et al., 2023], particularly
for safety-critical applications like autonomous driving. The
seminal work by [Kenadall and Gal, 2017] established a frame-
work for distinguishing between epistemic uncertainty (model
uncertainty) and aleatoric uncertainty (data uncertainty), both
of which are essential for reliable decision-making systems.
Similar implementations demontrated how techinques such
as Monte Carlo dropout could provide practical approxima-
tions of Bayesian inference in deep neural networks, offering
computationally efficient uncertainty estimates [Dawood et al.,
2023]. These approaches have since been extended to various
computer vision tasks, including semantic segmentation.

In the medical imaging domain, uncertainty-aware training
has proven particularly valuable, with several studies demon-
strating improved segmentation performance in regions with
ambiguous boundaries or pathological variations. Many SAM
models like SAM-Med2D, have successfully improved CT and
MRI image segmentation by finetuning adapters in the SAM
architecture [Cheng et al., 2023]. Despite their improvements
medical images are often ambiguous. Physicians often provide
different annotations for lesions in CT images [Jiang et al.,
2024].

The seminal paper on Uncertainty-Aware Adapter: Adapt-
ing Segment Anything Model (SAM) for Ambiguous Med-
ical Image Segmentation by [Jiang et al., 2024] provides a
strong foundation for addressing perceptual ambiguity through
aleatoric uncertainty modeling. This architecture creates a
dedicated latent space for sampling possible segmentation
variants, building upon previous uncertainty works like Prob-
abilistic U-Net [Kohl et al., 2019]. Its core innovation is
the Condition Modifies Sample Module (CMSM), which es-
tablishes a deeper integration between uncertainty samples
and model features, unlike previous approaches that sim-
ply concatenate stochastic samples at the output layer. The
Uncertainty-Aware Adapter serves as a lightweight component
that can be attached to the pre-trained SAM model, preserving
SAM’s powerful foundation while enabling the generation
of multiple plausible segmentation hypotheses. Rather than
relying on one-to-one ground truth to image mappings, it
calibrates the model on real-world scenarios with multiple

valid interpretations.

This approach mirrors the challenges faced in autonomous
driving during inclement weather, where environmental con-
ditions create similar perceptual ambiguities [Burnett et al.,
2023]. Just as medical images contain regions where multiple
expert interpretations are valid, driving scenes during snow,
rain, or fog present objects with unclear boundaries and vary-
ing visibility. The ability to generate multiple plausible seg-
mentation hypotheses rather than a single prediction enables
more robust decision-making in safety-critical autonomous
systems, allowing for conservative action planning when un-
certainty is high. These medical applications provide valuable
insights that can be transferred to autonomous driving, partic-
ularly in identifying critical regions under adverse conditions
where traditional deterministic segmentation approaches may
fail due to reduced sensor reliability.

Our work leverages three prominent datasets to validate
our approach: CamVid [Brostow et al., 2009], BDD100K [Yu
et al., 2020], and GTA driving. CamVid has established itself
as one of the most popular benchmarks for evaluating semantic
segmentation in driving scenarios, providing high-definition
video sequences with pixel-level annotations. BDD100K, de-
veloped by Berkeley, offers diverse driving scenes across
different weather conditions and times of day. The GTA
driving dataset complements these with synthetic driving
scenes and perfect ground truth annotations. While several
studies have utilized these datasets to evaluate segmentation
algorithms across varying conditions, comprehensive analysis
of uncertainty estimation remains limited [Modas et al., 2020],
[Wang et al., 2020]. Together, these three datasets provide a
rich foundation for evaluating uncertainty-aware segmentation
approaches in autonomous driving applications, particularly
for addressing challenges posed by inclement weather.

While existing research has made significant progress in
both uncertainty estimation and robust segmentation for au-
tonomous driving, there remains a gap in effectively combin-
ing these approaches to address the specific challenges posed
by inclement weather. This paper builds upon prior work by
integrating uncertainty-aware training techniques with state-
of-the-art segmentation models (SAM and SAM2) to develop
complementary approaches that address different aspects of the
inclement weather challenge: one aimed at improving overall
accuracy through uncertainty-guided finetuning (SAM2 with
Multistep Finetuning for Overall Accuracy Improvement),
and another focused on extreme conditions through adaptive
region focusing (UAT Adapter with SAM for Extreme
Weather Conditions).

III. METHODOLOGY

A. SAM?2 with Multistep Finetuning for Overall Accuracy
Improvement

The following outlines our step-by-step approach for fine-
tuning SAM2 on driving datasets like Bdd100k using a
custom loss function. We aim to improve segmentation ac-
curacy by incorporating multiple loss components, such as
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Fig. 1.

Binary Cross-Entropy, Intersection-over-Union (IoU) Error,
and Monte Carlo Uncertainty Loss.

We first prepare the dataset by pairing each image with its
corresponding ground truth segmentation mask for ease-of-
access during training. Additionally, the ground truth masks
are separated into a list of binary masks based on color, where
a pixel has a value of 1 if it is the member of the i’th mask
and 0O otherwise.

Then, the preprocessed images are passed through SAM?2
for the output masks, which have shape [n, h, w, ¢] (n masks,
each is h x w pixels with ¢ channels). This is reduced to
[n, h,w] using sigmoid before feeding into the loss function
to avoid dimension conflicts.

Once the model has made its predictions, we feed the
predictions and ground truth into our custom loss function.
This function incorporates three key components:

o Binary Cross-Entropy Loss

— This is used so that the model learns any underlying
distributions found in driving images.

BCE(9,y) = —— Zyl log(o

where
— ¢ contains the predicted masks, as logits
i/ contains the ground truth masks
o is the sigmoid function
— N is the total number of masks output by SAM2.
o IoU Loss
— This is used so that the model is penalized for
incorrect segmentations, such as missing a part of
a truck or over-segmenting several different objects
as one in its output.

IoU_Loss(y,y) =1 —IoU(g,y)

Y(G-y) +e
29+ y—=2(9y) +e

IoU(9,y) =

where

)+(1—y;)log(1—0(3:))

10U Error

[ Monte Carlo Uncertainty ]

Overview of Finetuned SAM2 architecture, along with loss function implementations, and inference testing steps.

— g is the predicted mask after applying the sigmoid
function

— y is the ground truth mask

— € is a small constant used for numerical stability.

+ Monte Carlo Uncertainty Loss

— The input image is fed into the model 10 times
to produce 10 mask predictions. We then calcu-
late pixel-wise standard deviation of each pixel’s
assigned mask, producing a tensor of float values.

— We use this tensor to as weights in our final loss
function as doing so will direct the model’s atten-
tion towards reducing uncertainty and variability in
output.

— We will refer to this tensor as U with width wm
height h, and elements ;.

Let:
C = a-BCE(g,y) + (1 — @) - 1oU(4, y)
W =C-exp(-U)

, and

1 w h
R:ﬁ.wxhzzuij

i=1 j=1
The combined loss function used is
Loss = mean(W) + R

After this loss is calculated, it is backpropagated into SAM?2.
This updates the model’s weights for improved accuracy of
segmentation masks and is essential to finetuning the model
for aligning its predictions with the ground truth of the dataset.

To ensure convergence, we repeat the above for 6000
steps, progressively refining the model’s ability to accurately
segment objects in self-driving scenarios.

The SAM2 model used was derived from the official
Facebook Research’s implementation [Ravi et al., 2024]. The
model is fine-tuned using Python, specifically the Pytorch
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framework, and is trained using a NVIDIA GeForce 4060
GPU.

B. UAT Adapter with SAM for Extreme Weather Conditions

Our second complementary approach was to tackle specific
object instance segmentations in extreme weather scenarios
utilizing the UAT-SAM adapter architecture by [Jiang et al.,
2024]. As referenced in section II, the UAT adapter is a
novel addition to the original SAM architecture, inspired by
methodologies in medical imaging. This adapter is inserted
into each transformer block of SAM. It acts as a compact
set of parameters that incorporates additional information—in
this case, uncertainty. The UAT adapter utilizes the CMSM
(Condition Modifies Sample Module) to incorporate a sampled
uncertainty code, z, derived from a CVAE (Conditional Vari-
ational Autoencoder). This CVAE employs both a Prior Net
(P) and a Posterior Net (Q) to encode observed uncertainty
information from the input image. [Jiang et al., 2024]

Unlike previous approaches that directly concatenate the
sampled code z with the main features, the UAT adapter takes
a more refined approach. It integrates position vectors (p) and
employs learnable attention-like mechanisms to transform z
into meaningful features. These features are then combined
with the main features in a layer-specific manner, allowing
for nuanced modifications. This design ensures that the un-
certainty sample from the CVAE is effectively captured and
utilized, leading to more robust segmentation outputs.

Prior to training the CAMVID dataset required extensive
pre-processing to be utilized. We applied a random weather
filter either fog, rain, or snow in random filtering strengths
form 0-1 (O=clear image , 1= completely obscured image)
to the original images to introduce difficulty to the model
when training and testing on obscured images due to extreme
weather.

Due to the module’s architecture and basis on medical image
segmentation, it required multiple ground truth segmentations
for every image. However a majority of publicly available
driving datasets including CAMVID only provide 1 set of
ground truth masks. To simulate the ambiguous segmentation
requirements in our training data, we applied elastic defor-
mations to all 1,419 human-segmented ground truth segmen-
tations from the CAMVID dataset. Each segmentation was
deformed by randomly shifting pixel locations in both the x
and y directions using a Gaussian filter. The magnitude and
smoothness of these shifts were controlled by two parameters:
alpha and sigma. The parameter alpha controlled the strength
of the deformation, while sigma determined the smoothness
of the deformation, with higher values resulting in more
gradual, blurry shifts. To introduce variability and simulate
different environmental conditions, three different parameter
sets were used: Fog-like deformations with alpha = 20.0 and
sigma = 15.0 for smoother, more blurred boundaries; Rain-
like deformations with alpha = 25.0 and sigma = 4.0 for
sharper, more localized changes; and Snow-like deformations
with alpha = 30.0 and sigma = 7.0 for medium smoothness
with stronger distortion.

‘ Uncertainty Aware Adapter ’
Probablistic Model

Prediction

Fig. 2. Overview of UA-SAM Training and data augmentation pipeline.

This approach was used to generate three additional an-
notations from single ground truth, alongside one human
annotation. Each image in the dataset, therefore, has four
segmentation masks including ground truth, capturing a range
of plausible interpretations. Each of the segmentations were
matched to the original weather filtered images for training.

We also utilized instance cropping on the data to specifically
focus on car segmentations to train, leveraging uncertainty
modeling to prioritize regions with high variability. This adap-
tation allows the model to generate accurate outputs even with
noisy or ambiguous data. The training methodology incorpo-
rates a tailored loss function, primarily the Dice Coefficient
Loss, to handle segmentation. This loss function improves
boundary detection, crucial for imbalanced datasets and dif-
ficult scenarios. The training pipeline follows a multi-stage
process, starting with a pre-trained Segment Anything Model
(SAM) and selective parameter freezing to retain SAM’s pre-
trained capabilities. Gradual adaptation fine-tunes the model
for specific domain needs. Key metrics like Dice score and
Intersection over Union (IoU) are monitored, with early stop-
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TABLE I
AVERAGE I0U SCORES OF MULTISTEP FINETUNED SAM?2

Model Car Truck | Person | Bicycle | Motorcycle | Traffic Light | Stop Sign | Fire Hydrant
Finetuned SAM2 | 0.156 | 0.187 0.230 0.247 0.117 0.300 0.185 0.119
Zero-shot SAM2 | 0.087 | 0.110 0.188 0.155 0.070 0.200 0.230 0.119

TABLE II

AVERAGE DICE COEFFICIENT SCORES OF MULTISTEP FINETUNED SAM?2

Model Car | Truck | Person | Bicycle | Motorcycle | Traffic Light | Stop Sign | Fire Hydrant
Finetuned SAM2 | 0.333 | 0.406 0.531 0.565 0.259 0.672 0.416 0.239
Zero-shot SAM2 | 0.142 | 0.200 0.428 0.333 0.138 0.475 0.543 0.239

ping to prevent overfitting. TensorBoard visualizes the training
process, ensuring high performance and adaptability in severe
conditions. We tested the finetuned model and zero-shot sam
by running inference on 177 heavy weather filtered CAMVID
car instance segmentations with the original ground truth
segmentation paired, and compared IOU and DICE across
both.

IV. RESULTS AND DISCUSSION
A. SAM?2 Multistep Finetuning

1) Overall Accuracy Improvements: To assess the perfor-
mance of finetuned SAM2, we evaluated it against base SAM?2
using Intersection-Over-Union (IoU) and the DICE coefficient.
Specifically, we found the average IoU scored by the models
when segmenting commonly seen road objects (e.g. cars,
people, bicycles, traffic lights) as well as when segmenting
entire images across the Bdd100k and Camvid datasets. The
following tables describe the results we found.

TABLE III
AVERAGE I0U SCORES OF MULTISTEP FINETUNED SAM?2

Model Overall - Bdd100k | Overall - Camvid
Finetuned SAM?2 0.303 0.303
Zero-shot SAM?2 0.246 0.246

TABLE IV

AVERAGE DICE COEFFICIENT SCORES OF MULTISTEP FINETUNED SAM?2

Model Overall - Bdd100k | Overall - Camvid
Finetuned SAM2 0.690 0.690
Zero-shot SAM?2 0.550 0.550

Our fine-tuned SAM2 outperformed zero-shot SAM2 in
most classes based on IoU and DICE scores, except for stop
signs and fire hydrants. This may have been the result of a
class imbalance in the Bdd100k dataset, which likely contains
more examples of common road objects, such as cars, people,
and motorcycles, than lesser seen objects, such as stop signs
and fire hydrants. Additionally, the smaller size of stop signs
and fire hydrants may have contributed to the reduced segmen-
tation performance, especially when attempting to segment
them at a distance. On average, our fine-tuned SAM2 model
improved IoU by 36.13% over zero-shot SAM?2, with the
highest gain being in car segmentation (+79.13%) and the

smallest nonzero gain in person segmentation (22.34%). For
DICE scores, our model improved by 48.79% on average,
with cars showing the highest increase (+134.51%) and people
showing the smallest nonzero increase (+24.07%).

—— e ol

Fig. 3. Performance Before and After Finetuning. Note how zero-shot SAM2
fails to generate meaningful masks over most of the image.

2) Uncertainty-Aware Finetuning Benefits:: Incorporating
uncertainty into our finetuning process inmproved segmenta-
tion in ambiguous regions, particularly for multi-component
objects like vehicles. Zero-shot SAM?2 often produced incon-
sistent masks for vehicles, segmenting individual components
(such as wheels or windows) or omitting the vehicle entirely
(fig. 3). After applying uncertainty-aware finetuning, SAM?2
consistently assigned a single mask per vehicle (fig. 3),
enhancing segmentation accuracy and reducing fragmented
outputs.

Additionally, our finetuned SAM2 model demonstrated
strong generalization across diverse driving scenarios. We
evaluated its performance on datasets from various environ-
ments, including Bdd100k (recorded in New York, San Fran-
cisco, and other regions), CamVid (recorded in Cambridge),
and the GTAS5 Driving Dataset (recorded in a simulated
driving environment). Across all three datasets, our model
consistently segmented key classes such as cars, trucks, roads,
and pedestrians, highlighting its robustness in both real world
and synthetic driving conditions.

B. UA-SAM

The fine tuned UAT-Adapter SAM was tested on 177
heavy weather filtered CAMVID car instance images with
the original human segmentations serving as the ground truth.
SAM served as the baseline, and once again the evaluation
metrics were IOU and the DICE coefficient. When heavily
obscured SAM often failed to segment or contour any object
within the image and was halted by rain, and snow specifically.
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Table V demonstrates the improvements that UAT Adapter
SAM was able to make over zero-shot SAM in similar
scenarios, highlighting its enhanced ability to handle complex
segmentation tasks. UAT-SAM showed a 30% increase in
the DICE coefficient and 42.7% increase in IOU scores. The
UAT Adapter SAM consistently outperformed the zero-shot
SAM by focusing on regions with high variability, improving
segmentation accuracy in challenging environments where
visibility is compromised.

TABLE V
AVERAGE IOU & DICE SCORES OF UA-SAM
Model Dice Score 10U
Zero-shot SAM 0.4809 0.3221
UA-SAM 0.6258 0.4598

Figure 4 shows an instance of a heavily filtered image, the
ground truth segmentation and the lack of any segmentations
on base SAM. Although UAT-SAM can be overconfident it
still is able to generally localize the car.

Original Image

Dice: 0.6362, loU: 0.4665
Improvement: 0.1565
. .

SAM
Dice: 0.4797, loU: 0.3155
3

Fig. 4. Example of instance segmentation on heavilty filtered car image in
rain scenario. From Left to Right, Top to Bottom: Filtered Original Image,
Elastic Deformation GT Segmeantation, Base SAM Segmentation, UA-SAM
Segmentation

Despite Figures 5 and 6 demonstrating certain instance
segmentations where UAT Adapter SAM and zero-shot SAM
fail to segment effectively, generally, the UAT Adapter SAM
exhibits better robustness and handles more challenging seg-
mentation cases. These failures, while notable, are less fre-
quent and often occur in particularly ambiguous or noisy
regions, which further emphasizes the model’s strength in
most typical conditions. Utilizing the approach outlined by

[Jiang et al., 2024] to segment ambiguous segmentations in
driving scenarios due to inclement weather showed consid-
erable promise. This method enabled the model to focus on
areas of uncertainty to segment cars, allowing for more reliable
segmentation even under adverse weather conditions like fog,
rain, or snow.
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Fig. 5. DICE scores of Zero-shot SAM and UA-SAM across 177 car object
patch segmentation in inclement weather

loU Scores: SAM vs UASAM
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Fig. 6. 10U scores of Zero-shot SAM and UA-SAM across 177 car object
patch segmentation in inclement weather

V. CONCLUSION

This research has demonstrated the effectiveness of two
complementary uncertainty-aware approaches for improving
semantic segmentation in self-driving applications, particularly
under challenging weather conditions. The UAT adapter inte-
grated with SAM successfully enhanced segmentation capa-
bilities in severe weather scenarios by leveraging uncertainty
estimates to identify and focus on critical regions where
visibility is compromised. Our experiments on the BDD100K
and CamVid datasets revealed that this approach significantly
improved detection and segmentation of crucial road elements,
with a particular focus on vehicles and specific objects of
interest. The UAT adapter showed remarkable improvements
in car detection accuracy under fog, heavy rain, and low-light
conditions, where traditional segmentation methods typically
fail.

In contrast, the uncertainty-incorporated multistep finetun-
ing approach with SAM2 proved particularly effective at
improving overall scene segmentation quality across varying
weather conditions. This method delivered clearer contours
and better distinction between foreground and background
elements, resulting in more precise boundary delineation and
improved class separation. The uncertainty-guided loss func-
tion enabled the model to adaptively focus on ambiguous
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regions during training, leading to more reliable segmentations
with well-calibrated confidence estimates.

Together, these approaches address different but comple-
mentary aspects of the inclement weather challenge in au-
tonomous driving perception. The UAT adapter provides a
targeted solution for the most severe conditions where safety-
critical decisions must be made despite limited visibility, while
the uncertainty-finetuned SAM?2 offers broader improvements
in segmentation quality that enhance overall system perfor-
mance.

Our contributions not only advance the state of the art
in semantic segmentation for challenging conditions but also
demonstrate the value of incorporating uncertainty awareness
into modern foundation models like SAM and SAM?2. The
methods presented here have potential applications beyond
autonomous driving, particularly in other safety-critical do-
mains where perception systems must operate reliably despite
environmental challenges.

VI. FUTURE WORK

We plan to extend the UAT adapter’s capabilities to segment
a wider range of objects beyond cars, including pedestrians,
cyclists, traffic signs, and other road users, providing a more
comprehensive perception system for autonomous vehicles.
Incorporating more scenarios and datasets to train the model
given more computation may also show considerable promise
in expanding the current performance.

Additionally, we will conduct specific finetuning of our fine-
tuned models on diverse weather scenarios to further improve
performance across different environmental conditions. This
weather-specific finetuning will target particular challenges
such as snow accumulation, sun glare, and night-time lighting,
allowing the system to better adapt to seasonal and temporal
variations in driving conditions.
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Abstract—This paper explores LL.Ms as generalized decision-
making assistants. We propose an assessment framework where
retrieval-augmented generation (RAG) architectures are com-
pared in simulated environments. By comparing objective win
rates in games like Monopoly and Werewolf, we assess the efficacy
of architectural options like reflection or multi-agent roles. This
allows us to then apply the best performing architectures to the
real-life context of political analysis. With this method, we find
that the RAG architectures explored do not show generalization
across decision-making contexts.

I. INTRODUCTION

Political decision-making is inherently complex, requiring
the ability to navigate conflicting interests, ethical consider-
ations, and long-term policy consequences. Unlike structured
tasks such as Go, where Al has achieved superhuman perfor-
mance through reinforcement learning [1], political decisions
involve subjective judgments. Research has shown that Al
struggles with strategic reasoning in multi-agent settings where
human behaviour is unpredictable, as seen in attempts to
apply Al to judicial decisions [2]. Moreover, political decision-
making is constrained by legal frameworks and ethical con-
cerns, making it difficult to define optimal strategies solely
through data-driven approaches [3].

Despite advancements in Al applications for law, most
existing models focus on legal text analysis, compliance
automation, and case law retrieval rather than autonomous
decision-making [4]. To develop AI capable of making in-
formed political choices, a training environment must simu-
late the strategic negotiation and decision-making pressures
inherent in politics. Simulated environments like Monopoly
[5] and Werewolf [6] have been used in behavioural studies
to model economic and social decision-making, making them
useful for training Al in competitive and cooperative strategies.
By engaging in these controlled simulations, Al agents can
develop decision-making frameworks that incorporate long-
term strategy, weighing uncertainties, and adaptability, all of
which are key skills necessary for legislative reasoning.

Still, the generalization of learned strategies from games to
real-world contexts remains challenging. Research in transfer
learning has demonstrated that Al systems often struggle to
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apply strategies across domains with different structures and
reward functions [7]. Political decisions rarely have objective
‘win conditions’ like games do, complicating the transfer
of game-derived strategies to legislative contexts. However,
recent advances in meta-learning approaches have shown
promising results in enabling Al to adapt learned strategies
to novel tasks with limited additional training [8].

LLMs also present unique advantages for this generalization
challenge. Unlike traditional reinforcement learning systems,
LLMs trained on diverse corpora already possess broad knowl-
edge about political systems, historical precedents, and ethi-
cal frameworks [9]. This background knowledge potentially
enables them to contextualize strategies learned in simulated
environments within appropriate political frameworks. Studies
examining zero-shot and few-shot learning capabilities of
LLMs suggest they can rapidly adapt to new decision contexts
with minimal domain-specific examples [10]. This raises the
question of whether LLMs can be effective decision-making
assistants across generalized environments, from structured
games to unstructured political analysis.

II. RELATED WORKS

Recent advancements in LLM-driven agent-based mod-
elling have demonstrated the potential for simulating complex
decision-making systems across social, economic, and legal
domains. Prior research has explored the use of LLMs as
autonomous agents, capable of interacting with dynamic envi-
ronments, learning from experience, and optimizing decision
strategies. For instance, several studies have explored the use
of LLMs in economic simulations. [11] studied LLM-driven
economic forecasting, demonstrating that GPT-4-based agents
could simulate macroeconomic trends and follow real-world
principles like the Phillips Curve. However, the study noted
that LLM agents struggled with long-term reasoning capabili-
ties. Likewise, [5] applied LLMs to negotiation games, noting
their tendencies to not make optimal decisions from a game
theoretic perspective, Still, structured prompting techniques
showed improvements in rational decision-making strategy.

Furthermore, many works show the promise of improving
decision-making through multi-agent systems. [12] applies
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multi-agent simulations to examine how LLMs can simulate
social media discourse on contentious topics like nuclear
energy policy and gender discrimination. Its findings highlight
how LLMs can replicate real-world sentiments, but also risk
amplifying biases and polarization. Similarly, [13] developed
COLA, a multi-agent stance detection system, where agents
acted as linguistic, domain-specific, and social media ex-
perts to analyze public discourse. Works like [14] applied
adversarial multi-agent legal reasoning, while [13] showed
that structured debates lead to more robust decision-making.
Similarly, [15] used two debating LLM agents to generate
and refine arguments in cooperative problem-solving scenar-
ios. More generally, [16] proposes a hierarchical language
architecture, finding improved decision-making via delegating
complex decisions to multiple sub-agents. These studies show
that multi-agent systems reduce logical inconsistencies and
lead to more structured decision-making than single-agent
approaches.

Lastly, studies also explore the use of vector stores and
other memory implementations to improve the performance
of decision-making systems over time. [17] introduced self-
reflection prompting, enabling models to review past decisions
and self-correct over time, improving logical consistency and
strategy formation. [18] carries out ablation studies to assess
the importance of memory-based and reflection-based RAG
agents in logical coherence. It finds that both components
play a significant role in improving subjective impressions
of believability and coherence. As seen, diverse memory
implementations can contribute to decision-making assistants
in subjective and objective environments.

Building on these findings, we evaluate multiple compo-
nents of RAG agents like multi-agent systems, memories, and
reflection. We evaluate these agents in objective and subjective
environments, comparing win rates in games of Monopoly and
Werewolf before applying the agents to generate arguments for
a political bill. This bridges the gap between abstract game
mechanics and political decision-making. By sequentially in-
creasing the complexity and realism of these simulations, we
investigate whether strategic reasoning skills transfer effec-
tively from game environments to political contexts.

III. METHODOLOGY

In brief, we compare four RAG architectures by their win
rates in two structured game environments: Monopoly and
Werewolf. For illustration, the two best-performing architec-
tures then analyze legislative texts, demonstrating subjective
impressions on the quality of the analysis produced. This
applies the architectures to increasingly complex decision-
making contexts; Monopoly involves independent decision-
making with structured rules. Werewolf introduces conver-
sational decision-making with structured rules. Political leg-
islative analysis presents the most complex scenario with no
structured rules to guide decision-making.

The four RAG architectures investigate combinations of
two agent environments with two memory approaches. Each
architecture runs 50 games of Monopoly and 50 games of

Werewolf to determine average win rates. A random seed
was used to ensure all games involved different initial con-
ditions where necessary, like when determining dice rolls
in Monopoly. Meta-prompting techniques, which have been
found to induce more reasoned responses in multi-agent
systems, standardize prompts across games where possible
to promote a fair comparison [19]. This factorial design
systematically evaluates the contribution of each component
to decision-making performance.

TABLE I: Architectures Compared

Architecture Agent roles Memory Contains

Courtroom; Raw

Two lawyers; judge

Past raw outputs

Courtroom; Reflection

Two lawyers; judge

Past output summaries

Advisory; Raw

Fast mind; slow mind

Past raw outputs

Advisory; Reflection

Fast mind; slow mind

Past output summaries

Park Lane costs $350
with a rent of $35.
Should you buy it?

l' ‘l
' '
' '
' 1
' '
| & |
' '
'
' Fast Mind Slow Mind !
' '
' '
. Uncertainty > 20% H
: :
. '
N e e e e e e e P e e e e e e mmmmmmmmmmmpmmmmmmmen .
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ap Park Lane offers an
impressive base rent

Vectorstore of 35, which...

Fig. 1: Courtroom Architecture

Park Lane costs $350
with a rent of $35.
Should you buy it?

N

Judge

A i

Park Lane offers an
impressive base rent
of 35, which...

Vectorstore

Fig. 2: Advisory Architecture
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The courtroom multi-agent environment has two lawyer
agents argue for different decisions, with a judge agent de-
termining which argument is stronger. All agents use GPT-40
Mini. The second multi-agent environment follows an advisory
model where a small, fast model (GPT-40 Mini; ’fast mind’)
makes most decisions and outputs an uncertainty score. This
agent falls back to consulting a slower, larger model (GPT-4o;
’slow mind’) when uncertainty exceeds a predefined threshold.
Detailed prompts and hyperparameters are available in the
supplementary material.

The raw memory vector store simply records past decisions
and retrieves the two most similar decisions as examples for
current decision-making. The reflective memory vector store
takes a more sophisticated approach by storing and retrieving
reflective summaries of multiple past decisions. Summaries
are generated dynamically throughout the games by GPT-40
after a given number of turns. The embedding model used
is Ada 02. Hyperparameters and prompts are detailed in the
supplementary materials.

In Monopoly simulations, the custom agent implementing
our architectures plays against a default player that follows
a simple strategy of buying property whenever funds are
available. Games conclude when one player depletes their
funds or after 200 turns. The custom agent wins if its
combined cash and mortgageable property value exceeds that
of the default player. For Werewolf scenarios, the custom
agent assumes the role of the werewolf and competes against
default chatbots emulating the seer, witch, and villager roles.
Detailed configurations for these default agents are provided in
the supplementary materials. Games continue until either the
werewolf is eliminated through voting or is the sole remaining
player.

To evaluate performance in real-world contexts, we selected
a random bill from the first session of the 44th Canadian
Parliament for the subjective legislative analysis. Bill data
was webscraped from openparliament.ca [20] and is available
in supplementary materials. The full text of each bill was
divided into 500-character chunks. The two best-performing
RAG architectures analyzed each chunk’s implications on the
overall decision to support or oppose the bill, mimicking the
turn-based structure of the games. After analyzing all chunks,
each architecture produced a final argument either supporting
or opposing the bill.

These arguments were presented to 53 survey participants
from a convenience sample. Participants ranked which argu-
ment they found more structured, balanced, compelling, and
professional. The complete set of survey questions is available
in the supplementary materials.

IV. RESULTS

We ran 50 games for each architecture, totalling 200 games
of Monopoly and 200 games of Werewolf. This had a cost
of approximately $50 CAD in API credits, including testing
runs before carrying out the final experiments. The average
win rates from these are presented below.

TABLE II: Win Rates From Monopoly

Architecture Memory | Win Rate
Courtroom Raw 32 %
Courtroom Reflection 26 %
Advisory Raw 46 &
Advisory Reflection 48 &

TABLE III: Win Rates From Werewolf

Architecture Memory | Win Rate
Courtroom Raw 18 &
Courtroom Reflection 20 %
Advisory Raw 20 %
Advisory Reflection 20 %

The Advisory architectures outperformed the Courtroom
counterparts, so we used them to provide arguments on Bill C-
242. 53 undergraduate students at the University of Waterloo
were surveyed on their subjective preferences regarding the
results. Participants were asked to rank the architectures across
four question categories:

1) Structure: “Which response did the best in presenting a
structured argument for or against the bill?”

2) Balance: “Which response provides the most balanced
discussion of multiple perspectives?”

3) Persuasion: “Which response is the most compelling?
Select the one that would be most likely to sway your
opinion.”

4) Decorum: “Which response is the most appropriate for
parliament? Select the response that maintains the best
formal and professional tone.”

These aggregated preferences are reported below.

TABLE IV: Survey Rankings

. Question Category & Preference
Architecture Structure | Balance | Persuasion | Decorum
Advisory: Raw 53% 38% 49% 51%
Advisory: Reflection 47% 62% 51% 49%

V. DISCUSSION
A. Limitations

There are numerous limitations in our findings. First, we
consider flaws in our experiments in the objective decision-
making environments. Assessing two games alone is not
sufficient to claim generalization in decision-making ability,
but was necessary to control costs in our study. Future work
can improve upon this limitation by adding other objec-
tive decision-making tasks. For instance, games like Risk or
Diplomacy with military or political themes may be viable
candidates. In addition, forecasting tasks in political or stock
prediction datasets may be suitable. Moreover, comparisons
between different games are currently not always balanced.
For instance, our default Monopoly player uses hard-coded
rules to decide to always buy a property in Monopoly if
funds are available, while the default player in Werewolf is
a chatbot with non-deterministic behaviour. This decision was
made since Werewolf required natural language conversation
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between agents which made hard-coded default players seem
unsuitable. Future work may wish to empirically evaluate these
assumptions by using hard-coded or chatbot-based default
players for both games. Lastly, there was only one opponent
in Monopoly while there were three other default players in
Werewolf due to the varying roles in the games. Future work
may wish to balance the number of opponents across the
games to ensure a similar level of difficulty, though this is
likely to increase costs.

Carrying on, we consider flaws in our survey in the sub-
jective decision-making arguments. The largest flaw in our
survey is that convenience sampling was used to control study
costs. However, this creates a very uniform demographic of
participants with a similar background as undergraduates at
the same university. With greater funding for marketing and
participation compensation, a more diverse sample of partic-
ipants across demographic strata would be feasible. It would
be especially valuable in collecting responses from participants
of varying ages, political affiliations, and familiarity with Al
technology. In a similar vein, future works could be improved
by a greater survey sample size backed by tests for statistical
significance.

B. Conclusions

Our results indicate that the Advisory model consistently
outperformed its Courtroom counterpart in both Monopoly,
and to a lesser extent Werewolf. This outcome implies that
a hierarchical structure, which leverages multiple levels of
decision-making appears more suited for tasks involving
clearly defined strategic goals. While the two-layered ap-
proach in Advisory agents may not fully capture all nu-
ances—particularly in conversational environments like Were-
wolf—it nonetheless demonstrated greater adaptability in man-
aging complex turn-by-turn decisions compared to the adver-
sarial debate format used in Courtroom.

When extended to political scenarios, participants did not
exhibit a strong preference for responses generated with raw
versus reflective vector stores as preferences within the set
categories for the two responses were relatively evenly split.
This suggests that summarizing retrieved content may offer
limited marginal benefit under these conditions.

Overall, the RAG architectures tested here did not show
compelling evidence of generalizable decision-making compe-
tence across the diverse settings examined. Our study under-
scores the importance of domain-aware architectural choices
and the need to develop more robust strategies for bridging the
gap between controlled simulation environments and real pol-
icy discourse. Future work could explore more specialized ar-
chitectural variants, such as introducing different foundational
models or increasing test-time compute to allow sampling
over multiple candidate responses. It may also be promising
to explore fine-tuned LLMs or LLMs with reinforcement-
learning techniques like reward modelling. In all, we present
this work as a rough first demonstration to bridge models from
objective tasks to subjective tasks, hoping that it may spark

future work to improve our methods and experimental results
in this interdisciplinary topic.
C. Supplementary Materials

Supplementary materials are available online at:
https://github.com/Madhav-Malhotra/political-chatbot
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Abstract—The increasing usage of artificial intelligence in MRI
disease classification and diagnosis presents several ethical impli-
cations related to patient privacy, data security, and responsible
use. This paper will review some current use cases of Al-based
MRI image classification models and propose a framework for
ethics policymakers and medical information officers to ensure
patient safety and responsible usage of Al in clinical settings.

I. INTRODUCTION

The increasing popularity of Artificial Intelligence (Al) has
led to its growing usage in the healthcare industry. The most
common use cases range from improving patient interactions
to helping physicians in their diagnosis [1]. An area of
interest for clinicians has been the upcoming use of image-
based detection models that assists in disease diagnosis. These
machine learning algorithms use patient data to train and test
the model and eventually outline areas of concern [2]. Given
this new and emerging application, it is increasingly important
for healthcare policy makers as well as private hospitals to
understand the ethical implications associated with its use.
This paper will delve into some current use cases of Al for
MRI classification and disease diagnosis. It will also present a
framework that policymakers and medical information officers
should consult when assessing the ethical validity of an Al-
based service. This paper will address the ethical implications
of AI usage in MRI technology for diagnostic purposes
through three main phases, outlined in Figure 1. The initial
section of this paper will provide a review of the ongoing use
cases of Al in MRI technology, providing a background on the
datasets, model accuracy, and overt ethical implications. The
second phase of this paper will address these specific ethical
issues and will serve as a basis for producing a guideline
for policy makers and medical information officers who are
looking to implement the model for clinical use. The final
phase will assess the validity and necessity of such a guideline.
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II. RELATED WORKS

Existing guidelines have addressed the various ethical impli-
cations of using Al in healthcare settings, but the broad nature
of these guidelines have made it difficult to apply to varying
situations. The guideline developed by Bouderhem [3] is one
of the most prominent guideline pertaining to the ethical use
of Al in healthcare. Bourderhem [3] outlines a wide range
of use cases of Al and analyzes the current ethical challenges
and provides various recommendations to address these issues.
Unfortunately, due to its broad scope, it fails to apply itself
to more specific use cases. As a result, we have chosen to
address one category of use cases and cater a comprehensive
guideline that outlines major weaknesses and ethical concerns.

ITI. REVIEWING CURRENT USE CASES AND LITERATURE

A. Diagnosing Alzheimer’s Disease Through CNN-Based MRI
Detection

Jain et al. [4] explored the use of Convolutional Neural
Networks (CNNs) and transfer learning to develop an image
classification model that could aid physicians in the early
diagnosis of Alzheimer’s Disease. Since the training of a CNN
typically requires a large database of information, transfer
learning is utilized to easily facilitate the process of developing
a new model. Transfer learning is the use of one model’s
output to train another model [5]. Currently, MRI is the most
common method of detecting early deterioration as it provides
clear anatomical abnormalities, which is strongly linked to the
development of Mild Cognitive Impairment [6]. As a result,
the classification model categorized MRI results as either Mild
Cognitive Impairment (MCI), Cognitively Normal (CN), and
Alzheimer’s Disease (AD). These classifications were then
used to identify any neural degeneration early on and guided
the physician’s treatment plan.

This paper [4] identifies how a pre-existing CNN, VGG-16,
that was originally trained on data from ImageNet was used to
facilitate the production of a new 3-way classification CNN for
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Reviewing 5 different use
cases and existing
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Identifying which aspects
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ethical usage.
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To assess the usability and
accuracy of the framework,
Applying the Framework »| we applied it to one of the
use cases that was
reviewed.

Phase 3

Fig. 1. Flowchart of the phases and objectives of this paper.

MRI images. The resultant precision of their developed vali-
dation set was 95.73%. For binary classifications, the model
accuracy for AD vs MCI was 99.30%, 99.14% for AD vs CN,
and 99.22% for MCI vs CN. Further analysis of the 3-way
model using confusion matrices revealed a precision, recall,
and F1 score for each condition: the AD condition produced
values of 1, 0.91, and 0.95, the CN condition produced values
of 0.99, 0.97, 0.98, and the MCI produced values of 0.90, 1,
and 0.94, respectively.

Due to the covert nature of the initial dataset and its use
of transfer learning, inferring the level of diversity involved
in the dataset is very difficult. Any bias present in the initial
dataset from ImageNet poses a great risk to the developed
CNN, as it will be reflected in the results. A lack of diversity
in patient representativeness could result in an overfitting
of specific features, leading to inaccurate classification and
reported accuracies, which is a large risk for potential clinical
usage; racial, sexual, and clinical diversity is an important
consideration when assessing the accuracy of the model and
the following clinical implications. Also, due to the black box
nature of CNN’s, the decision-making strategies employed by
the CNN are not fully transparent, and can only be altered
to a certain extent. Lastly, there is a question of cost of de-
velopment, implementation, and access; when determining for
who and how this technology is implemented, clinics should
consider which patients will have access to this technology,
and if it provides them with a greater advantage than an
individual who is unable to afford it. There remains a question
of affordability and insurance coverage for the model usage,
as different countries have varying policies on the type of

technology and services available to the patient.

B. Using Al in MRI Classification of Liver Tumors

Zhen et al.’s [7] primary objective was to develop a deep
learning system (DLS) for accurate liver tumor diagnosis using
MRI and clinical data. The model addressed the limitations of
current diagnostic methods, which are often subjective and rely
on the radiologist’s experience. The DLS was created to clas-
sify liver tumors into seven categories, differentiate between
benign and malignant tumors using unenhanced MRI, and
further classify malignant tumors by integrating unenhanced
images and clinical data. Ultimately, the researchers aimed to
provide a more efficient, accessible, and accurate diagnostic
tool that could potentially reduce the need for contrast agents
and the associated costs and side effects.

Zhen et al. [7] used convolutional neural networks (CNNs),
specifically the Google Inception-ResNet V2 architecture,
which was pre-trained on a large image dataset and subse-
quently fine-tuned using the study’s liver tumor MRI data.
The dataset included 31,608 MRI images from 1,210 pa-
tients for training, and 6,816 images from 201 patients for
validation. The seven-way classifier, which utilized six MRI
sequences, achieved area under ROC curve (AUC) values
ranging from 0.897 to 0.987, with sensitivity between 53.3%
and 100% and specificity between 91.6% and 99.5%. The
binary classifier, using unenhanced sequences, reached an
AUC of 0.946, indicating its ability to distinguish malignant
from benign tumors with accuracy comparable to that of a
classifier based on enhanced sequences (AUC of 0.951). The
three-way malignancy classifier, which integrated unenhanced
images and clinical data, demonstrated significantly enhanced
AUCs (ranging from 0.963 to 0.998) compared to models that
relied solely on enhanced images for similar classifications,
closely matching the radiologists’ performance.

The study received approval from an independent institu-
tional review board (IRB) at Sir Run Run Shaw Hospital,
China, however there were concerns regarding the robustness
of Chinese IRBs. Factors such as lack of thorough review
processes and insufficient oversight may have compromised
the ethical review capacity of the study [8]. Although written
informed consent was not mandated in accordance with local
laws, this approach is different from other countries’ standards.
This discrepancy highlights the variability in ethical standards
globally, raising issues of patient privacy and the gener-
alizability of research. While the study employed saliency
maps to enhance interpretability, it acknowledges the lack of
full transparency regarding the AI models’ decision-making
processes. Lastly, the study relied on patient medical records
and MRI images, with limited discussion on specific security
measures or anonymization protocols.

C. Utilizing Machine Learning in MRI Technology to Diag-
nose Schizophrenia

The paper by Sadeghi et al. [9] reviewed and evaluated the
applications of artificial intelligence (Al), specifically machine
learning (ML) and deep learning (DL), in the diagnosis
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of schizophrenia using magnetic resonance imaging (MRI).
Schizophrenia is a complex psychiatric disorder that poses
significant challenges to the accurate diagnosis due to the
heterogeneity of the symptoms and the absence of defini-
tive biomarkers [10]. Sadeghi et al. [9] explored Al-based
computer-aided diagnostic systems (CADS) designed to auto-
mate the process of diagnosis by using structural MRI (sMRI)
and functional MRI (fMRI) datasets. The paper emphasizes the
integration of Al into clinical workflows to assist healthcare
professionals. It also provides a summary of the advancements
of Al methods, specifically their performance, challenges, and
potential improvements for diagnosing schizophrenia.

The study used various Al models, including conventional
ML methods (e.g. Support Vector Machines [SVM], Random
Forest) and advanced DL architectures (e.g. CNNs, Autoen-
coders) [9]. The reported accuracies varied widely depending
on the dataset, preprocessing techniques, and feature selection
methods. For example, ML models like SVM showed up to
94% accuracy with carefully extracted features [9]. At the
same time, DL methods, such as 3d-CNNs, achieved com-
parable or better results through direct analyses of raw data.
The models leveraged features such as gray matter volume,
connectivity matrices, and task-based fMRI signal data [9].
However, the performance consistency was impacted due to
challenges such as dataset imbalance, small sample sizes, and
MRI image noise. The paper concluded that DL’s automatic
feature extraction was more advantageous than the ML’s
reliance on manual feature engineering but acknowledged the
computational intensity required as a trade-off.

Although the paper did not explicitly discuss the ethical
implications of Al-based schizophrenia diagnosis, its findings
raise potential concerns. One such implication is that Al
models trained on neuroimaging data may overemphasize
structural and functional brain abnormalities at the expense
of behavioural and functional impairments, which are critical
for DSM-5 diagnosis [11]. Hence, this could lead to biases in
clinical decision-making if Al tools are not used with compre-
hensive psychiatric evaluations. Furthermore, while publicly
available datasets (e.g. COBRE, SchizConnect) enhance ac-
cessibility, limitations in sample diversity and generalizability
could lead to the misrepresentation of schizophrenia pheno-
types in Al-based diagnostic tools. A final challenge is the
lack of standardized evaluation metrics and transparency in
model decisions, which can hinder replicability and trust in
clinical settings. Future research should focus on integrating
multi-modal assessments (e.g., neuroimaging and behavior
markers), improving or adding data governance frameworks,
and ensuring that AI models are interpretable and clinically
relevant.

D. Detecting Brain Tumors Using Convolutional Neural Net-
works

Research conducted by Rahman et al. [12] leveraged artifi-
cial intelligence, specifically the EfficientNetB2 deep learning
architecture, to detect patterns indicative of brain tumors
in MRI scans. By improving MRI image quality through

preprocessing techniques such as cropping, equalization, and
homomorphic filtering, the research aimed to enhance the
accuracy, efficiency, and consistency of tumor detection. Using
publicly available datasets featuring diverse MRI images of
individuals with and without brain tumors, the study sought to
create a tool that could assist, rather than replace, physicians.
This Al-driven methodology is designed to provide rapid, pre-
cise, and reliable tumor detection, reducing diagnostic delays
and mitigating variability caused by human interpretation. This
study used the EfficientNetB2 deep learning architecture, a
convolutional neural network model known for its efficiency
and scalability in image classification tasks [12]. Fine-tuned
for brain tumor detection, the model was trained on three
publicly available datasets, achieving high validation accura-
cies of 99.83% on the BD-BrainTumor dataset, 99.75% on the
Brain-tumor-detection dataset, and 99.2% on the Brain-MRI-
images-for-brain-tumor-detection dataset. While these results
indicate strong performance, real-world clinical settings intro-
duce variability that may impact accuracy, such as differences
in MRI protocols, scanner types, and patient demographics.
Thus, external validation on diverse, real-world datasets is
necessary to assess generalizability. The architecture leverages
a balanced scaling approach to optimize depth, width, and
resolution, enabling it to capture intricate patterns in MRI
scans. Preprocessing techniques, such as cropping, equaliza-
tion, and homomorphic filtering, further enhanced the input
data quality, boosting the model’s ability to identify tumor
regions accurately. However, despite its strong performance,
the model is intended as a decision-support tool rather than
a replacement for clinical expertise. Further studies on model
interpretability and robustness in real-world environments will
be critical for ensuring safe and effective deployment in
healthcare settings. Publicly available datasets from Kaggle,
including BD-BrainTumor, Brain-tumor-detection, and Brain-
MRI-images-for-brain-tumor-detection were used for the study
[12]. While these datasets are anonymized and promote acces-
sibility, the lack of information about patient consent during
data collection raises ethical concerns. In addition, no explicit
security measures, such as encryption or secure storage, were
mentioned, which could pose risks in clinical applications re-
quiring compliance with privacy regulations like HIPAA. The
datasets may also be biased, potentially limiting the model’s
generalizability to diverse populations, tumor types, and imag-
ing conditions. The absence of real-world clinical validation
further increases this concern. Additionally, the study does
not address the explainability of the model, which is critical
for building trust in Al-driven diagnoses. While intended
to assist physicians, over-reliance on such models without
sufficient human oversight could be problematic. Addressing
these issues is crucial for the ethical and effective integration
of an Al model such as this one in clinical healthcare.

E. Using Deep Learning Models For Early-Stage Breast Can-
cer Screening

Breast cancer is the second leading cause of cancer-related
deaths among women [13]. This has prompted researchers and
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healthcare systems to implement large-scale mammography
screening programs aimed at early detection to improve out-
comes [14]. For instance, the USA performs approximately
43 million mammograms annually [5]. However, the effec-
tiveness of these screenings is hindered by variability in
cancer detection professionals’ accuracy [15]. Additionally,
a shortage of mammography specialists worldwide limits the
availability and scalability of these programs [14]. To address
these challenges, McKinney et al. [16] introduced an artificial
intelligence (AI) system, specifically a deep learning model,
designed to screen mammograms for early-stage breast cancer,
enhancing both the accuracy and scalability of breast cancer
detection.

The AI system for breast cancer screening consisted of an
ensemble of three deep learning models: lesions, breast and
full case. The lesion model identified the ten most specific
regions of suspicion in mammogram images of suggestive
cancer using a model called RetinaNet2. Each extracted region
was passed through a feature detector called MobileNetV23.
Malignancy predictions were then produced for each region
and combined into a composite score. The breast model pro-
cessed images of each breast independently. The model used
a ResNet-v2-50 network (a type of CNN) as an Image Feature
Extractor. Each breast had two views of a mammogram, which
were concatenated and passed through an additional neural
network to predict a cancer score for each breast. The cancer
scores for the right breast and left breast were then compared
and the maximum score between the two breasts were taken
as the case-level score. Finally, the case model considered
the complete set of mammogram views; the model uses a
ResNet-v1-50 network as a feature extractor. The complete
set of mammogram views contained four images, which were
concatenated. The concatenated vector was passed through
a hidden layer used for binary classification to determine
whether the patient (case) had cancer (yes or no).

All models were trained with data augmentation applied to
each image. Each model generated a cancer risk score between
0 and 1, with the final score being the mean of the three mod-
els’ predictions. The model was trained using datasets from
two UK screening centers and one US center, representing
both populations. The UK dataset included 25,856 women,
while the US dataset contained 3,097 women. McKinney et al.
[16] evaluated the model’s accuracy through three approaches.
First, they compared Al predictions with historical clinical
decisions, finding that the AI model demonstrated higher
specificity and improved sensitivity compared to both UK
first readers and US single readers in radiology practice. The
model’s performance on the UK dataset had an AUC of 0.996,
while on the US dataset, the AUC was 0.883. Second, they
conducted cross-cultural testing by applying the UK-trained
model to the US dataset, which showed improved specificity
and sensitivity compared to radiologists. Here, the Al model
achieved an AUC of 0.889 on the US dataset. Finally, they
compared the Al system’s performance against six US board-
certified radiologists interpreting 500 challenging US cases. In
this comparison, the Al system significantly outperformed the

radiologists’ average performance, with the mean radioligst
reading AUC being 0.75, whereas the Al system achieved an
AUC of 0.871.

One limitation highlighted by McKinney et al. [16] was
dataset representativeness. While the UK dataset mirrored the
nationwide screening population, the US dataset came from
a single screening center. For this Al system to achieve its
potential for scalability and accessibility, the datasets need
to be truly representative of diverse populations. This issue
is reflected in the system performance: AUC values were
highest in the UK where it was developed but decreased
when trained on US data. Although this decline in perfor-
mance was minimal, it raises concerns about the system’s
effectiveness across different populations, particularly given
that performance variations were observed even between the
demographically similar UK and US.

IV. DEVELOPING A FRAMEWORK

Upon conducting a thorough review of the varying use cases
of AI models in MRI technology and diagnosis, the obvious,
yet unique, ethical concerns became clear. In order to develop
a successful and practical framework for policymakers, it was
essential to grasp the common underlying issues in each use
case. It became abundantly clear that patient privacy, data
collection, interpretation of results, and responsible use were
critical to the ethical use of each of the models. As a result,
the proposed guideline, provided in the Appendix, presents
a graded rubric system that allows developers and future
executors to filter their models through an ethical framework
to determine the strengths of their models.

A. Criteria Justification

In recent years, significant progress has been made towards
regulating Al in healthcare through scientific reviews and
policy initiatives [3], [17], [18]. We drew upon these efforts
to establish our specific guidelines. In particular, Bouderhem’s
[3] article provides a comprehensive analysis of the technical,
ethical and regulatory challenges related to the application
of Al in healthcare. We specifically chose to closely ex-
amine Bouderhem’s [3] article given its publication recency
and thorough examination of AI’s prevalence, opportunities,
challenges and risks. Bouderhem [3] outlines a broad range
of Al applications, including care management, drug discov-
ery, medical imaging analysis and more. Bouderhem’s [3]
analysis thoroughly examines global policies, such as the
United States’ General Data Protection Regulation (GDPR),
the United States’ Health Insurance Portability and Account-
ability Act (HIPAA) and the European AI Act proposal. This
article concludes itself by calling on the WHO to strengthen
its regulatory role in Al-driven healthcare, arguing that current
legal frameworks are insufficient.

Bourdenhem’s message is important and his background
research is rigorous, however, the broad scope and general
recommendations create ambiguity about implementation [3].
To build upon their work, a more specific guideline for policy-
makers and healthcare institutions was developed to regulate
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the AI applications in healthcare. One specific and pertinents
application of Al in healthcare was chosen as the basis of this
guideline: the role of Al in MRI detection. Bouderhem’s [3]
article notes that policies like the Al Act proposal struggle with
defining AI broadly. This makes it difficult to provide clear
ethical and regulatory recommendations. Narrowing the focus
to Al in MRI detection specifically will ensure our criteria is
specific and practical for future implementation.

The usage of AI in MRI detection was chosen due to
its promising potential across a wide range of clinical ap-
plications, including cancer detection, cardiac imaging, and
musculoskeletal assessment [19]. MRI technology is also
highly versatile, benefiting patients across all demographics,
including adolescents, children, and older adults [19]. De-
spite its advantages, traditional MRI technology has notable
limitations, such as long scan times and high sensitivity to
patient movement, which can lead to blurred images and
increased costs [19]. However, Al-driven advancements have
demonstrated the ability to accelerate scans, enhance image
quality, and reduce expenses [19]. Given the notable potential
of Al in MRI, it is crucial to address its challenges and
establish clear, rigorous standards. Implementing well-defined
technical and ethical guidelines will ensure responsible adop-
tion in healthcare institutions, maximizing its benefits while
maintaining patient safety and data integrity.

The goal of this paper is to establish clear guidelines with
numbered criteria (1-4) to systematically evaluate whether
an Al model meant for MRI technology meets technical
and ethical standards. Building on the challenges outlined
by Bouderhem [3], three key categories were developed with
subsequent criteria for the responsible implementation of
Al-based MRI technology in healthcare institutions: patient
privacy and security, data collection, and interpretation and
responsibility.

First, a section on patient privacy and security addresses the
risks posed by patient information being shared or stolen [3].
This criteria emphasizes that patient data used for Al training
should be encrypted and anonymized, with strict mechanisms
in place to prevent unauthorized access, data breaches, or re-
identification risks. In addition, patients should have clear and
accessible options to give informed consent for data collection,
processing, and sharing, with the ability to opt out if they
choose. Furthermore, Al systems should comply with legal and
ethical data protection standards such as GDPR and HIPAA
to uphold patient privacy.

Second, a section on data collection addresses how biased
algorithms can result in discrimination and inaccurate predic-
tions [3]. This section emphasizes the importance of diverse
and unbiased datasets to prevent discrimination, particularly
against vulnerable populations. Al models should incorporate
MRI data from underrepresented cases to improve diagnostic
precision across all groups of patients. Healthcare providers
and patients should also be fully informed about how Al
models are trained, including potential biases or data gaps.
In addition, continuous monitoring must be implemented to
identify and mitigate biases in real-world applications, ensur-

ing that Al models remain equitable and effective.

Finally, a section on interpretation and responsibility ad-
dresses the lack of performance indicators in Al system. These
are metrics that healthcare providers need to detect errors
and biases that could have legal implications such as medical
malpractice liability [3]. Our criteria focus on Al’s role as
a supportive tool rather than a replacement for physician
judgment. The model should enhance, rather than dictate,
clinical decisions, with physicians fully trained to interpret
and verify Al-generated outputs. Transparency is essential,
meaning that Al models should provide explainable results,
confidence scores, and clearly defined limitations to prevent
over reliance on automated assessments. Finally, Al-generated
insights should be integrated into clinical workflows, ensuring
that physicians can track and evaluate their influence on final
diagnostic decisions.

B. Utilizing the Scoring System

The advancement of Al-driven healthcare models presents
significant ethical and regulatory challenges, highlighting the
need for a structured and objective grading system. A well-
defined framework is essential to ensure transparency and
consistency while evaluating Al compliance with patient pri-
vacy and ethical considerations. Without standardizing the
grading system, assessing the ethical nature of the Al models
may become subjective, resulting in reduced trust in the
Al applications in healthcare. The proposed grading system
provides a uniform approach to measure compliance with eth-
ical standards and technical effectiveness, allowing healthcare
providers, policy makers, Al developers, and patients to make
informed decisions based on measurable criteria rather than
arbitrary judgment.

The grading system utilizes a four-tier rubric, assigning
numerical values from 1 to 4 based on compliance and
performance levels. This structured approach ensures that
evaluations remain comparable across Al models, and aligned
with industry best practices and regulatory requirements.
By adhering to fundamental legal and ethical standards, the
grading system minimizes ambiguity and provides a precise
evaluation of an Al model’s adherence to ethical and technical
benchmarks.

1) Considerations for Level Selection: The selection of
each level within the grading system was guided by con-
sidering compliance, effort, and ethical responsibility. The
grading structure follows a hierarchical pattern where Level
1 represents a complete lack of necessary safeguards, making
the Al system unreliable. Level 2 reflects basic but inconsis-
tent measures, highlighting the need for further refinement.
Level 3 shows a a strong adherence to ethical and technical
standards, with only minor area that needed improvement.
Finally, Level 4 reflects full compliance, where Al systems
not only meet but exceed industry standards by implementing
proactive measures for security, fairness, and usability. This
progressive framework ensures that Al models are assessed in
a manner that acknowledges incremental improvements while
maintaining strict ethical requirements. Ethical considerations
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such as patient privacy, informed consent, and bias mitigation
are inherently qualitative, making their assessment challeng-
ing. Hence, the grading system translates these principles
into measurable indicators. For example, privacy measures
are assessed based on encryption and anonymization, while
informed consent is evaluated through clarity, accessibility,
and comprehensiveness. Bias mitigation efforts are quantified
by analyzing demographic representation and the frequency of
bias examinations. By transforming these qualitative aspects
into metrics, the grading system ensures that AI compliance
is systematically evaluated, allowing stakeholders to precisely
gauge an Al model’s ethical performance.

2) Ethical Trade-offs and Balance: The grading system
acknowledges the trade-offs in AI development, balancing
model accuracy, transparency, security, and fairness. AI mod-
els that emphasize accuracy at the expense of transparency
receive lower interpretability scores, while models prioritizing
privacy without sufficient compliance measures receive lower
regulatory adherence. This balanced approach prevents any
single aspect from being overemphasized at the expense of
another, allowing a balanced evaluation of the model.

3) Pass/Fail Criteria Thresholds: The grading system clas-
sifies Al models into four levels based on their ethical
compliance, security, fairness, and transparency, ranging from
severely inadequate to fully compliant. Level 1 models pose
severe ethical and security risks, failing to meet basic indus-
try standards, making them unsuitable for real-world usage.
Level 2 models demonstrate partial compliance, but require
significant modifications to mitigate ethical concerns before
being considered reliable. Level 3 models are deemed ethically
sound and compliant with industry regulations, incorporating
strong security, privacy, and fairness measures, though they
may need minor refinements to optimize ethical performance.
Level 4 models represent full compliance with industry stan-
dards, demonstrating proactive strategies to ensure long-term
reliability, ethical integrity, and responsible AI implementa-
tion. To pass the grading system, an Al model must achieve
a minimum threshold of 50% in each section, ensuring it
meets basic ethical, security, and transparency requirements.
The evaluation framework aligns with GDPR, HIPAA, and
industry best practices, emphasizing ethical compliance while
considering accessibility for real-world application. The scor-
ing system categorizes models based on performance, where
below 50% indicates failure and requires major improvements,
scores between 50-75% are satisfactory but need refinement,
and scores above 75% demonstrate strong ethical compliance
to best practices. Each section of the evaluation contributes to
the overall ethical assessment of an Al model. In Section one:
Patient Privacy and Security (Total Score: 20), models scoring
0-10 fail to meet ethical security standards and require major
improvements, while scores between 11-15 meet baseline
requirements but need refinement, and those above 15 are
generally compliant with minor adjustments needed. In Section
two: Data Collection Practices (Total Score: 16), models below
8 fail ethical standards, scores between 9-12 are satisfactory
but could improve, and scores above 12 demonstrate respon-

sible data collection practices. In Section three: Interpretation
and Responsibility (Total Score: 28), scores below 14 indi-
cate a need for major improvements, those between 15-21
are satisfactory but require refinements, and those above 21
meet ethical guidelines and demonstrate strong accountability.
This structured evaluation ensures that higher-scoring mod-
els reflect increasingly proactive and comprehensive ethical
measures, rather than simply meeting minimum compliance.
By incentivizing models to prioritize security, fairness, and
transparency, the system establishes a clear guidance for
improvement and aligns with regulatory best practices. This
framework not only advances ethical Al development, but also
provides a guiding structure for developers and policymakers
to create Al solutions that are both innovative and responsible.

V. APPLICATION OF THE FRAMEWORK

In this section, the proposed ethical guidelines will be
applied to the paper "Advanced Al-driven approach for en-
hanced brain tumour detection from MRI images utilizing
EfficientNetB2” by Rahman et al [12]. This paper was chosen
for review as it explores the use of Al in medical imaging,
specifically for brain tumour detection, which aligns well with
the key areas of the criteria: patient privacy and security,
data collection, and Al interpretability. The criteria will help
highlight the ethical considerations associated with the three
main issues as well as transparency in Al decision-making
of this specific paper. Applying these standards will assess
how well the study [12] adheres to the ethical principles
in AI deployment within healthcare, pinpointing areas that
require improvement. This section serves as an example of
how policymakers and clinicians who hope to implement Al-
based technology should approach future applications and
ethical concerns.

A. Application of Section 1 Guidelines

Section One of the guidelines, found in the Appendix
A, includes actionable measures such as encryption and
anonymization of patient data, mechanisms to prevent unau-
thorized access, informed consent procedures, opt-out options,
and adherence to regulatory frameworks such as GDPR and
HIPAA. Applying these guidelines to the article “Advanced
Al-driven approach for enhanced brain tumor detection from
MRI images utilizing EfficientNetB2” [12] makes it evident
that the study lacks critical privacy safeguards. While the
research utilizes publicly available datasets such as those
from Kaggle, it does not clarify whether these datasets meet
standard privacy regulations or whether patients were given a
choice to opt out. Another key component of this section is
informed consent, which means patients should be aware of
how their data is being used, collected, and stored. The study
does not discuss the consent mechanism or transparency in
using the Al model. This lack of coverage raises ethical con-
cerns, as patient data is central to Al training, and its misuse
could lead to privacy violations in patient data. Furthermore,
the study does not detail security measures implemented to
prevent unauthorized data access, leaving patient information
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vulnerable. Regulatory compliance is another missing factor,
as there is no mention of how the model aligns with data
protection laws. Given these shortcomings, the study scores a
level 2 for section 1. The reasoning for the score is that they
use publicly available datasets. However, they lack mention or
action of protection and transparency regarding data security,
consent, and patient control over personal information. To
improve, researchers should implement encryption, outline
informed consent processes, ensure opt-out options, and align
with GDPR/HIPAA standards to enhance data protection.

B. Application of Section 2 Guidelines

Section Two of the guidelines [A], highlights the importance
of utilizing diverse and representative datasets, along with
ensuring transparency in data collection, to mitigate bias and
improve the reliability of the results. The study by Rahman
et al. [12] uses three publicly available MRI datasets (BD-
BrainTumor, Brain-Tumor-Detection, and Brain-MRI-Images-
for-Brain-Tumor-detection) to train an EfficientNetB2 deep
learning model for brain tumor detection. While this demon-
strates an effort toward dataset diversity, the study does not
provide demographic breakdowns, fairness assessments, or
bias mitigation strategies. Issues with data diversity can raise
concerns about how well the model generalizes across different
populations, tumor types, and imaging conditions. A key
weakness is the lack of inclusion of rare cases, which may
impact the model accuracy for underrepresented tumor types
or patient demographics. Additionally, no information about
dataset bias or continuous monitoring mechanisms is provided,
making it difficult to determine if the model adapts to real-
world variations. The absence of explainability features and
clinician involvement in data interpretation further limits trans-
parency. Trust in Al-driven diagnostics may be reduced with-
out clearly disclosing how patients and healthcare providers
are informed about dataset limitations. Hence, the study scores
a level 3 in data collection. The study effectively uses multiple
datasets and advanced preprocessing techniques but lacks bias
analysis, fairness checks, and long-term validation in clinical
settings. The study should include rare tumor cases, conduct
fairness audits, and implement ongoing bias monitoring to
improve its score in section 2. Future AI models should
prioritize transparency and real-world validation to ensure
equitable healthcare applications.

C. Application of Section 3 Guidelines

Section 3 of the Al ethics assessment matrix [A] involves
interpretation and accountability, whether and how the Al
models aid doctors in decision-making, are transparent, and
yield accountability. It establishes whether the Al is presenting
useful help, offering explainability, offering confidence scores,
defining boundaries, and embedded in clinical workflows.
Section 3 also deals with physicians’ training and how ac-
countability is distributed between human clinicians and Al
technology. Applying these criteria to Rahman et al.’s [12]
work, we see that the proposed EfficientNetB2-based model
for brain tumor detection is very accurate and possesses good

clinical potential. However, it lacks any significant features of
interpretability or transparency. The model’s decision-making
process is not well explained, and while confidence scores are
mentioned, their calibration and reliability are not mentioned.
Moreover, education of physicians in Al interpretation is not
addressed, and over-reliance or misinterpretation of Al results
is feared. Generally, this study falls partially within Section 3
of the matrix, at an estimated level 3. The model is applicable
in decision support but requires a high level of physician
control. The weakest aspect is the lack of formal training of
clinicians, which can be resolved by making Al interpretation
courses mandatory and having specific guidelines on Al-
assisted MRI evaluation. In addition, policymakers need to
ensure that Al algorithms applied in radiology are transparent,
have well-documented limitations, and function effectively
in clinical practice to enhance trust and reliability in health
applications.

D. Overall Performance

The objective of the Al ethics guideline is to ensure that
Al-driven healthcare applications align with ethical, legal,
and safety standards while promoting fairness, transparency,
and accountability. The framework assesses Al models in
MRI-based diagnostics across three key areas: patient privacy
and security, data collection practices, and interpretation and
responsibility. By applying this guideline to Advanced Al-
driven approach for enhanced brain tumor detection from MRI
images utilizing EfficientNetB2, we can evaluate how well this
study adheres to ethical principles in Al deployment within
medical imaging. In Section 1, which focuses on patient pri-
vacy and security, the study performed poorly, scoring a Level
2. While the dataset used in the study was publicly available,
the paper did not address key privacy safeguards such as
encryption, informed consent, or patient opt-out mechanisms.
There is also a lack of discussion regarding compliance with
GDPR or HIPAA standards, raising ethical concerns about
data security. To improve, future Al research must prioritize
explicit policies on patient consent, transparency in data use,
and robust security measures to prevent unauthorized access
and misuse of medical data. In Section 2, which evaluates data
collection fairness and representativeness, the study performed
slightly better, scoring a Level 3. The research used multiple
datasets, demonstrating some level of diversity in training
data. However, the absence of demographic breakdowns and
fairness assessments makes it difficult to determine whether
the model generalizes well across different patient groups. The
study also lacked bias mitigation strategies, and no measures
were in place for continuous monitoring of Al bias in real-
world applications. To align better with ethical standards,
future research should integrate rare cases, conduct fairness
audits, and establish long-term monitoring strategies to prevent
Al bias from affecting clinical outcomes. In Section 3, which
assesses Al interpretability and physician responsibility, the
study scored another Level 3. While the model demonstrated
strong accuracy, it lacked crucial elements of explainability
and transparency. Confidence scores were not clearly cali-
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brated, and there was no structured training for physicians to
interpret Al-generated outputs. Without a clear explanation of
how the model reaches its decisions, there is a risk of over-
reliance on Al or physician misinterpretation. To improve, Al
developers should implement transparent confidence scoring,
ensure full documentation of model limitations, and provide
mandatory Al training for clinicians to mitigate risks of blind
Al reliance.

VI. CONCLUSION

In conclusion, this paper provided a broad review of the
current usage of Al models in MRI technology to help physi-
cians with patient diagnosis. While conducting these reviews,
several ethical issues specific to MRI usage became evident.
As a result, a comprehensive guideline was developed for
policymakers and developers to grade the ethical implications
of the model. Looking ahead, the implications of these ethical
guidelines extend far beyond this study. As Al continues
to shape medical diagnostics, researchers, policymakers, and
healthcare providers must work together to establish uni-
versal ethical standards for Al in radiology and medical
imaging. Future Al models should be designed with privacy-
first architectures, fairness-aware algorithms, and clinician-
in-the-loop frameworks to ensure ethical and responsible Al
implementation in patient care. Transparency, accountability,
and human oversight must remain central principles in Al
development, ensuring that AI enhances medical decision-
making without undermining physician expertise or compro-
mising patient rights. By adopting these ethical standards, the
future of Al in healthcare can be both transformational and
ethically sound.

VII. FUTURE WORK

Future work could improve the level of detail of the pro-
posed guidelines and allow for a more flexible grading system.
It may be difficult for model developers and policy makers
to objectively assess the nature of the model, so it may be
helpful to have an external party assess the ethical nature of
their models.

VIII. LIMITATIONS

The obvious limitations of this review include the lack of
specificity when detailing the original datasets. It is difficult
to outline the representativeness and diversity of the dataset
as well as the accuracy of the models since th specifics of the
training data are undisclosed.
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APPENDIX

TABLE I: Section one of the guideline outlining patient privacy and
security.

Section 1: Patient Privacy
and Security

The patient data being

There are no
policies or security
measures in place to
protect sensitive
information, creating

Patient data is
anonymized, but
encryption standards
are weak or
inconsistently
applied. Some
measures exist to
protect privacy, but

Patient data is both
encrypted and
anonymized before
training, following
standard security
protocols. Data
protection measures

Patient data
undergoes advanced
encryption and
thorough
anonymization

used to train the ) ; e before training,
. a high risk of gaps remain in meet most .
model is encrypted . meeting industry
. exposure and ensuring robust regulatory
and anonymized before . . . standards.
. . misuse. security and requirements, but

training. . . C .

compliance with periodic audits and

data protection updates are needed.

regulations.
Comprehensive

There are mechanisms
in place to prevent
unauthorized access,

data breaches, and re-
identification risks.

No security
measures in place to
prevent unauthorized
access of data, with

a high-risk of data
breaches and/or
re-identification

risks.

Basic security
measures exist but
are insufficient or

inconsistently

applied.

Strong security
measures, but some
challenges remain.

security framework
in place to prevent
prevent unauthorized
access of data, with
a low-risk of data
breaches and/or
re-identification
risks.

The AI system provides
patients with clear, acces-
sible options to give in-
formed consent for data
collection, processing, and
sharing.

No informed
consent process.
Data is collected

and shared without
patient knowledge.
Consent notices do
not exist, or they
lack any
transparency on data
collection,
frequency, and
third-party access.

Some effort toward
consent, but the
information is
vague, difficult to
access, or missing
critical details, such
as what data is
collected, how often,
and which third
parties are involved.
Patients may not
fully understand
how their data is
used.

Clear consent
process with minor
areas of
improvement. Most
key details on data
collection,
frequency, and
third-party access
are provided, but
there may be minor
gaps or lack of
clarity in certain
areas.

Fully transparent,
easy-to-understand
consent process
where patients have
full control over
their data. Consent
notices clearly
specify what data is
collected, how
frequently, and
which third parties
have access,
ensuring true
informed consent.
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Patients can opt-out of the
collection of their personal
data or the application of
the AI model and were
explicitly informed of its
use in diagnosis, training,
and development.

No opt-out option.
Al use is mandatory,
and patients have no
ability to refuse data

collection. There is

no transparency
about Al
involvement in
diagnosis, training,
or development.

Opt-out exists but is
difficult to access or
poorly explained.
Information about
opting out is either
too vague or too
complex, such as
being written in
overly broad or
highly detailed
language. Patients
may not be aware
that opting out is
possible, or they
may struggle to
navigate the process
due to a lack of
clarity.

Clear opt-out
options with minor
challenges. Patients

are explicitly

informed of Al
usage and have a
way to opt-out but
the process may
have small barriers,
such as requiring
multiple steps,
unclear instructions,
or limited
accessibility. Some
patients may still
find it challenging
to opt-out.

Clear opt-out system
with full
transparency and
patient control.
Patients are
explicitly informed
about the use of Al
in diagnosis,
training, and
development. The
opt-out process is
simple, accessible,
and user-friendly,
allowing patients to
easily withdraw
consent at any time.

The AI system ensure
compliance with legal and
ethical data protection
standards (e.g., GDPR,
HIPAA) to safeguard
patient privacy.

No efforts are made
to meet legal and
ethical data
protection standards.
There is no mention
of compliance
mechanisms. The
system poses a high
risk of privacy
breaches.

Some attempts to
address compliance
are evident, but
significant gaps
remain. Key
safeguards are
missing or
insufficient, leaving
patient data
vulnerable.

The system adheres
to most legal and
ethical data
protection
requirements, with
only minor
weaknesses that
need improvement.
Privacy risks are
minimal but not
fully eliminated.

The system adhered
to all legal and
ethical data
protection
requirements. Strong
safeguards are in
place, with
compliance being
actively monitored
and continuously
improved to
maintain data
security and patient
privacy.

Total /20
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TABLE II: Section two of the guideline outlining ethical data collection.

Section 2: Data Collection

Data collection methods
designed to minimize bias
and ensure diversity in
the dataset, particularly
to prevent discrimination
against vulnerable popula-
tions.

Data collection
lacks diversity and
includes significant
biases, leading to

potential
discrimination.
There are no active
efforts to ensure
representation, and
vulnerable
populations are
underrepresented or
excluded.

Some measures are
in place to promote
diversity, but gaps
remain in ensuring
fair representation.
The dataset includes
different
demographic groups,
but bias assessments
are infrequent, and
vulnerable
populations may still
be underrepresented.

Data collection is
designed to
minimize bias and
includes a
representative
sample of diverse
populations. Regular
audits and fairness
assessments are
conducted, and
adjustments are
made to address any
identified biases.

Data collection
follows best
practices to ensure
diversity and prevent
discrimination
against vulnerable
populations.
Proactive strategies,
such as targeted data
collection,
fairness-aware
algorithms, and
continuous bias
monitoring, are
implemented to
maintain equity and
inclusivity.

Patients and healthcare
providers are adequately
informed about how Al
models are trained, in-
cluding any potential data
gaps or biases.

No measures are in
place to ensure that
patients and
healthcare providers
understand how Al
models are trained.
There is minimal or
non-existent
awareness of data
gaps or biases.

Limited efforts are
made to provide
transparency. Some
basic information is
available, but it is
insufficient for
meaningful
understanding of
data gaps or biases.

Patients and
healthcare providers
are provided with
clear resources to
understand Al
model training,
including potential
biases and data
gaps. Transparency
is achieved through
adequate but
standard materials,
but the depth of
information may be
limited.

Patients and
healthcare providers
are provided with
well-structured and
accessible resources
that clearly outline
the Al model’s
training process,
data sources,
potential biases, and
data gaps.
Transparency is
robust, with
materials that
provide potential
data gaps and biases
associated with the
Al model.
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The AI model incorpo-
rates MRI data from pa-
tients with rarer cases that
are underrepresented to
ensure equitable and ac-
curate diagnostic perfor-
mance.

The AI model does
not incorporate MRI
data from
underrepresented
rare cases, leading
to biased and
inaccurate
diagnostics.

Limited efforts are
made to include
MRI data from rare
cases, but
representation
remains insufficient,
impacting diagnostic
equity in
demographic,
geographic, or age
diversity.

The AI model
actively integrates
MRI data from rare
cases to improve
diagnostic accuracy
and equity,
addressing some
data gaps.

The Al model
systematically
ensures broad
representation of
rare cases across
demographics,
geography, and age
groups. Clear
documentation
highlights data
sources, biases, and
measures taken to
enhance equity and
accuracy.

The AI model plans to
undergo continuous mon-
itoring to identify and
mitigate biases in real-
world MRI diagnostics,
with mechanisms in place
to update training data.

The AI model
provides little to no
measures for
continuous
monitoring or bias
mitigation. The Al
model remains
unchanged, lacking
a mechanism to
address biases in
real-world MRI
diagnostics.

Limited monitoring
exists, but it is
irregular or lacks
depth. Bias
mitigation efforts
are minimal, and
updates to training
data are infrequent.

The Al model
undergoes structured
monitoring to
identify and reduce
biases. Mechanisms
exist to update
training data
periodically,
improving fairness
and accuracy.

A comprehensive
and proactive
monitoring system
is in place,
continuously
tracking biases in
real-world MRI
diagnostics.
Transparent
reporting, bias
mitigation strategies,
and regular training
data updates ensure
fairness and
accuracy.

Total /16
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TABLE III: Section three of the guideline outlining interpretation and
responsible usage.

Section 3: Interpretation 1 2 3 4
and Responsibility
The model serves as
a highly effective
The model decision-support
consistently tool, strengthening

The model supplements
the judgement of the
physician’s decision and
strengthens their diagno-
sis.

The model provides
little to no
meaningful

assistance in clinical

decision-making. It
lacks interpretability,
produces
inconsistent results,
and may even
introduce errors or
biases that hinder
accurate diagnoses.

The model offers
some assistance but
is not fully reliable.

It can highlight
potential findings,
but its outputs
require significant
physician oversight
due to occasional
inaccuracies or lack
of explainability.

enhances physician
judgment by
providing reliable
diagnostic insights.
It improves
efficiency and
accuracy while
maintaining
transparency, but
physicians must still
verify results before
making final
decisions.

physician diagnoses
with high accuracy
and clear
explainability. It
integrates seamlessly
into clinical
workflows,
continuously learns
from real-world
data, and provides
interpretable
recommendations
that align with best
medical practices.

Physicians are informed
and trained how to inter-
pret and use the results.

No formal training
provided for
physicians on

Al-assisted MRI
interpretation.

Some basic training
is available, but
lacks depth and

does not cover Al
limitations or biases.

Regular training
sessions are
provided, covering
Al interpretation
and some ethical
concerns.

Comprehensive
training ensures
physicians
understand Al
outputs, biases, and
ethical concerns
with ongoing
learning
opportunities.

The model’s outputs are
explainable and transpar-
ent, allowing physicians to
verify Al-generated MRI
assessments before mak-
ing a clinical decision.

Al model provides
no explanations for
its assessments;
physicians cannot
verify results.

Al provides minimal
explanations, but
they are unclear or
overly complex.

Al outputs include
confidence scores
and basic
explanations,
allowing some
verification.

Al model outputs
are fully transparent,
with clear
confidence scores,
reasoning, and
decision-support
tools for physicians.
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The model serves as a
supplementary tool, en-
abling physicians to en-
hance their MRI interpre-
tation while retaining full
responsibility for the final
diagnosis.

Al operates
autonomously with
little to no physician
oversight, posing
risks of
over-reliance.

Al is supplementary
but not clearly
defined as a
decision-support
tool; physicians may
over-rely on it.

Al serves as a clear
supplementary tool,
with physicians
retaining final
decision-making
authority.

Ai is fully integrated
into workflows as a
decision-support
tool, ensuring that
physicians enhance
their diagnoses
while maintaining
full responsibility.

The model provides con-
fidence scores, allowing
physicians to assess the
reliability of AI-generated

The model does not
provide confidence
scores, making it
difficult for
physicians to assess
the reliability of
Al-generated

The model provides
basic confidence
scores, but they are
not well-calibrated
or interpretable,
requiring significant
physician intuition

The model provides
confidence scores
that are generally
well-calibrated and
useful, helping
physicians weigh Al
findings in context,
though occasional

The model provides
highly accurate,
well-calibrated

confidence scores
that seamlessly
integrate with
clinical data,
allowing physicians
to assess reliability

findings in the context of findings to use effectively. inconsistencies exist. with high
- confidence.

other clinical data.
The model
The model clearly thoroughly

The model’s limitations
are clearly defined, ensur-
ing that physicians remain
aware of potential biases
and do not over-rely on AI
outputs.

The model does not
communicate its
limitations, leading
to potential
over-reliance or
misinterpretation by
physicians.

The model provides
some general
disclaimers about
limitations, but they
lack specificity or
transparency,
requiring physicians
to infer potential
biases.

defines its key
limitations,
including known
biases, and presents
this information in
an accessible way,
though some edge
cases may still be
unclear.

documents its
limitations, biases,
and potential failure
cases, ensuring
physicians have a
comprehensive
understanding and
do not over-rely on
Al outputs.

The model’s insights are
documented within clin-
ical workflows, allowing
physicians to track its in-
fluence on their final diag-
nostic decisions.

The model’s insights
are not documented
within clinical
workflows, making
it difficult to assess
its influence on
decision-making.

The model’s insights
are recorded
sporadically but lack
structured
documentation,
limiting the ability
to track Al influence
effectively.

The model’s insights
are consistently
documented in

clinical workflows,
allowing physicians
to review and assess
ATI’s role in
decision-making,
though some
integration gaps
remain.

The model’s insights
are fully integrated
into clinical
workflows, with
structured
documentation that
allows physicians to
track Al influence
seamlessly,
supporting
transparency and
accountability.

Total /28
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Abstract—Financial markets are driven by both quantitative
data and the complex narratives that shape investor sentiment.
This paper introduces the Financial Narrative Genome, an Al-
driven system that extracts and visualizes the thematic structures,
causal relationships, and emotional tones embedded within finan-
cial texts. We address the challenge of capturing the dynamic
evolution of market narratives by employing advanced Natural
Language Processing (NLP) techniques, including transformer
models, to analyze news, reports, and social media. The system
constructs a network graph representing the ’narrative genome’
and tracks emotional tone changes over time. We demonstrate the
system’s ability to identify key narrative shifts and correlate them
with market fluctuations. This approach provides a more nuanced
understanding of market dynamics, with potential applications
in risk management and investment strategy. The project’s code
is available on GitHub.

I. INTRODUCTION

The digital age has ushered in an unprecedented volume
of unstructured textual data, transforming how information is
disseminated and consumed within financial markets. While
traditional quantitative analysis remains essential, the nar-
ratives embedded within news, social media, and corporate
communications hold valuable insights into market sentiment
and behavior. This paper presents the ’Financial Narrative
Genome,” an Al-driven system designed to extract and visual-
ize the complex interplay of themes, causal relationships, and
emotional tones that constitute these narratives. By creating a
structured representation of financial narratives, this research
aims to lay the groundwork for a more nuanced understanding
of market dynamics and potential predictive capabilities.

A. Motivation

The financial markets, while driven by quantifiable data,
are fundamentally shaped by narratives. These narratives,
encompassing news reports, social media discourse, and
corporate communications, influence investor sentiment
and ultimately drive market behavior. Traditional financial
analysis, however, often overlooks the nuanced interplay of
these narratives, relying primarily on quantitative metrics
that fail to capture the dynamic and evolving nature of
market sentiment. With the increasing volume and velocity of
financial information, particularly in the age of social media,
the need for narrative analysis tools has become paramount.
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Recent advancements in Natural Language Processing
(NLP) and machine learning have opened new avenues
for understanding and interpreting complex textual data.
Specifically, the development of transformer-based models
[1] has enabled more nuanced sentiment analysis and
information extraction from unstructured text [2]. However,
while sentiment analysis provides a valuable measure of
emotional tone, it often fails to capture the intricate web of
causal relationships and thematic connections that constitute
a financial narrative. Recent research has explored the
extraction of financial narratives, and summarization of
those narratives. However, the creation of a comprehensive
’Financial Narrative Genome,” which maps the evolution of
these narratives over time and predicts their impact on market
dynamics, remains an underexplored area.

Therefore, this research aims to address the challenge of
extracting, representing, and predicting market shifts through
deep narrative analysis. We introduce the concept of a Fi-
nancial Narrative Genome, a system that utilizes advanced
NLP techniques to deconstruct and visualize the intercon-
nected themes, causal relationships, and emotional arcs within
financial narratives. This system then uses this data to produce
predictions of market shifts. By developing a system that can
accurately map and interpret the *Financial Narrative Genome,’
we aim to provide a more comprehensive and insightful
approach to financial market analysis.

B. Related Works

Basic sentiment analysis has been widely explored due to
its social value, leading to numerous approaches. Techniques
include feature extraction (TF-IDF, PoS tagging, negation
handling), feature selection (Chi-square, Mutual Information,
Information Gain), and word embeddings (Word2Vec, GloVe,
BERT, ELMo) to enhance contextual understanding [3].
More recently, large language models (LLMs) have advanced
natural language processing (NLP) by capturing nuances like
sarcasm and context shifts, leading to more accurate sentiment
predictions. By leveraging LLMs, sentiment analysis can
be enriched through multiple sub-tasks, providing deeper
insights into emotional tone, causal inference, tone extraction
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and entity relationships.

Semantic matching identifies relationships between words
or phrases based on meaning rather than exact wording. This
approach leverages knowledge bases, word embeddings, or
transformer models to determine whether different expressions
convey the same concept. By capturing context and synonymy,
semantic matching ensures that variations in phrasing do
not hinder understanding [4]. In the context of the four
subtasks—causal inference, theme extraction, emotional tone
identification, and entity relationships—semantic matching
can unify varying outputs by linking related concepts. For
example, if causal inference detects ’supply chain disruptions
affect revenue,” while theme extraction identifies “logistics
issues,” semantic matching can recognize their connection.
This enables a structured, interconnected representation of
financial narratives, enhancing the clarity and utility of the
final graph.

C. Problem Definition

The goal of this paper is to perform robust sentiment
analysis on financial narratives and create an interconnected
financial narrative genome graph. Traditional sentiment
analysis struggles to capture nuanced emotions, context shifts,
and the complex relationships in financial texts. To address
this, we propose using LLMs for sentiment extraction, along
with semantic matching to link related concepts across
multiple sub-tasks (e.g., causal inference, theme extraction,
emotional tone identification, and entity relationships).

The problem can be formally defined as: Given a set of
financial texts 7', the objective is to construct a graph
G = (V, E), where:
o V represents nodes such as sentiment, themes, and enti-
ties.
o F represents edges that connect related entities, sub-
themes, and causal effects.

This process involves the following steps:
1) Sentiment extraction using LLMs.
2) Semantic matching to link concepts across sub-tasks.
3) Graph construction to represent interconnected financial
narratives.

By combining LLMs with semantic matching, we aim
to enhance sentiment analysis and build a more structured,
accurate representation of financial narratives for improved
decision-making.

II. METHODOLOGY

This section outlines the methodology used in the develop-
ment of our project, detailing the data presentation, proposed
solutions, evaluation strategies, and additional analyses per-
formed to optimize our solution. Our approach follows a sys-
tematic design process, focusing on emotional tone extraction
and narrative evolution.

A. Data Presentation

The data used in this project was sourced from three main
sources:

e Stock Price Data: Stock prices of relevant companies
were retrieved from Yahoo Finance, spanning the period
from 2010 to the present. This data provides insights into
the fluctuations in stock prices, which are influenced by
financial narratives and market events.

e Financial News Data: Financial news articles were ob-
tained using the GNews API and the newspaper3k library.
These articles provide the narrative context for the stock
price data, allowing us to explore how different types of
financial news impact market sentiment.

e Annual Letter to Shareholder Data: Annual shareholder
letters from companies’ financial reports were collected
to capture corporate messaging, strategic priorities, and
evolving themes. These documents offer valuable insights
into how companies communicate financial performance,
challenges, and future outlooks to investors.

The processed data was stored in two primary files:

o (tickername)_graph.csv: Contains the emotional tone
scores of articles, averaged by year.

o (tickername)_news.csv: Stores the associated financial
news articles, along with metadata such as the publication
date and source.

B. Solution

Our solution focuses on two key aspects: emotional tone
analysis and tracking the evolution of financial narratives.

1) Emotional Tone Extraction: The first step in our solution
was to extract emotional tones from the news articles using
the Gemini APIL. This API provides a robust analysis of the
emotional sentiment behind each article, allowing us to track
how emotions like optimism, anxiety, or sadness evolve over
time. We averaged the emotional tone scores on a yearly basis
to better align the sentiment data with stock price fluctuations.

2) Narrative Evolution Tracking: In addition to emotional
tone extraction, we constructed a network graph to track
the evolution of financial narratives. Each theme and entity
was represented as a node, and each causal relationship was
represented as an edge. The relationships were linked to nodes
through semantic matching. The nodes were embedded and a
sentence transformer model mapped the relationships to the
nodes with the high semantic similarity. This network structure
helped us visualize how financial narratives evolve and relate
to one another over time, offering insights into how these
narratives shape market behavior.

3) Narrative Summary: The Gemini API synthesized ex-
tracted themes, entities, relationships, and emotions to produce
a comprehensive 15-year company narrative. This summary
revealed deeper historical insights than a basic overview.

C. Evaluation of Solution

To evaluate the effectiveness of our proposed solutions, we
employed the following methods:
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Fig. 1. Emotional tone graph for AAPL

1) Emotional Tone Accuracy: We evaluated the accuracy of
the emotional tone extraction process by comparing the results
from the Gemini API with a small manually labeled dataset
of financial news articles. Although this manual validation
was limited, it provided a general sense of how well the API
was able to classify the emotional tone of financial news. We
focused primarily on ensuring that the scores for key emotions,
such as optimism and anxiety, aligned with the content of the
articles.

2) Correlation Between Emotional Tones and Stock Price:
To assess the relevance of emotional tones to stock price
movements, we performed a correlation analysis. Specifically,
we looked at the relationship between the emotional sentiment
(e.g., optimism or anxiety) and stock price changes over the
same time period. This allowed us to quantify how fluctuations
in sentiment correlate with market trends, providing a basis for
a predictive model.

3) Visualizing Narrative Evolution: We also evaluated the
narrative evolution tracking through the construction of net-
work graphs (As shown in Fig. 2). The accuracy and utility
of these graphs were assessed qualitatively by inspecting
whether key events and articles were accurately represented
and connected. We verified that the narrative graph structure
accurately reflected the evolution of financial topics over time.

D. Additional Analysis and Optimization

1) Data Integration and Final Visualization: Finally, we
integrated the emotional tone data with the stock price data for
visualization purposes. The goal was to create an interactive
time-series line graph, which would show the stock prices
alongside emotional tone data for different emotions (As

shown in Fig. 1). This visualization was built using Plotly.js
and integrated into a Flask web interface for easy exploration.

III. RESULTS
A. System Performance Overview

Our system was tested extensively using Amazon’s share-
holder letters, along with corresponding financial data and
news articles spanning from 2010 to 2025. The results demon-
strated the model’s ability to capture nuanced financial nar-
ratives, linking emotional tones, key themes, and cause-and-
effect relationships into a comprehensive network graph.

B. Emotional Tone Analysis

The emotional tone analysis accurately extracted sentiment
from diverse sources, including news articles, social
media posts, and shareholder letters. The graph generated for
Amazon illustrated fluctuations in emotions such as optimism,
anxiety, and sadness, with notable peaks and troughs aligning
with major financial events.

Key findings include:

o Optimism spikes were observed during significant growth
phases, such as Amazon’s expansion into new markets
and technological innovations.

o Anxiety and sadness correlated with periods of regulatory
challenges and supply chain disruptions.

e Surprise emerged in reaction to unexpected earnings
reports and acquisitions.

o Neutral sentiments appeared during periods of stability,
providing a baseline for comparison.
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Fig. 2. Genome graph for AMZN

The interactive nature of the graph, built with Plotly and
Flask, allows users to explore yearly emotional trends and
compare sentiment against stock price movements. This gives
an accessible yet powerful way to visualize emotional under-
currents driving market behavior.

C. Thematic and Entity Relationship Extraction

Our system successfully identified and categorized key
themes, entities, and relationships. The network graph output
visualizes these elements, creating a web of interconnected
insights.

Key thematic extractions included:

o Al-driven innovation linked to revenue growth and prod-
uct diversification.

e Supply chain resilience emerging as a recurring topic
during COVID-19 and global disruptions.

e Regulatory pressures connected to concerns about an-
titrust actions and data privacy.

o Sustainability and ESG (Environmental, Social, Gover-
nance) themes associated with Amazon’s carbon neutral-
ity pledges and renewable energy initiatives.

Entity relationship extraction mapped crucial connections,
such as partnerships, leadership changes, and competitive
dynamics, showcasing how these factors intertwined with
sentiment and market performance.

D. Cause and Effect Mapping

One of the most powerful outcomes of our model was
the creation of a cause-and-effect narrative map. Using
semantic matching through sentence embeddings and a
transformer model, the system linked key financial events to

their consequences.

Examples:

o Cost reduction strategies leading to higher profitability
and corresponding optimism spikes.

e Increased regulatory scrutiny resulting in anxiety and
stock price stagnation.

e Cloud services expansion driving positive sentiment and
stock surges.

This causality mapping offers actionable insights by show-
ing not only what happened, but also why, making it a valuable
tool for analysts and investors alike.

E. Website Functionality and User Interaction

Our React-based website provides an intuitive interface for
users to input a company’s ticker symbol and retrieve detailed
financial narratives. Beyond the emotional tone graph, users
can explore:

o Annual emotional sentiment breakdowns, with a focus on
key events.

o Stock price overlays to compare sentiment with market
performance.

o Company narrative summaries, generated via the Gemini
Flash 2 API, condensing 15 years of data into a readable
financial storyline.

e Network graph visualizations, highlighting key themes,
entities, and causal pathways.

F. Comparative Analysis with Traditional Sentiment Analysis

To further validate our approach, we compared our financial
narrative genome system with traditional sentiment analysis
methods. The results highlighted clear advantages:
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o Depth of insight: Traditional sentiment analysis yielded
broad positive/negative sentiments, while our system un-
covered thematic context and causality.

e Accuracy By filtering irrelevant content and focusing on
company-specific narratives, our model reduced noise and
improved sentiment precision.

o Interpretability The network graph and narrative output
made complex data more digestible for users, enhancing
decision-making.

G. Future Enhancements

The current results showcase a robust, scalable foundation,
but there are several directions for enhancement:

o Industry-wide benchmarking: Extending analysis to entire
sectors for cross-company comparison.

e Real-time updates: Incorporating live news feeds and
stock data for up-to-date financial narratives.

e Deeper social media integration: Capturing emerging
trends and retail investor sentiment.

o Event prediction models: Training the system to forecast
potential market impacts based on evolving narratives.

o Sentiment refinement: Exploring multi modal analysis,
combining text with audio or video content to enhance
emotional extraction accuracy.

Our results demonstrate that the Financial Narrative
Genome approach delivers a more comprehensive, inter-
pretable, and actionable understanding of company perfor-
mance than traditional sentiment analysis. This method not
only aids in retrospective analysis but also holds the poten-
tial to improve forecasting, risk assessment, and investment
strategies.

IV. CONCLUSION

This paper presented the Financial Narrative Genome, an
Al-driven system designed to extract, represent, and analyze
the complex narratives that shape the behavior of the financial
market. By leveraging advanced NLP techniques, we demon-
strated the feasibility of constructing a network graph that
captures the dynamic interplay of themes, causal relationships,
and emotional tones within financial texts. We further showed
how this 'narrative genome’ can be used to track emotional
tone changes over time and identify key narrative shifts that
correlate with market fluctuations. This research provides a
foundation for a more nuanced and insightful approach to
financial market analysis, moving beyond traditional quanti-
tative methods.

Building upon this work, the next steps would focus on
enhancing the system’s predictive capabilities. Specifically, our
goal is to develop more sophisticated machine learning models
that can leverage the ’narrative genome’ to forecast market
trends with greater accuracy. This would involve incorporating
a wider range of data sources, including real-time social
media feeds and alternative data sets, to improve the system’s
robustness and responsiveness. A significant challenge remains
in addressing the inherent subjectivity of narrative interpreta-
tion and mitigating potential biases in the data and models.

Furthermore, developing a robust evaluation framework that
can accurately assess the system’s predictive performance is
crucial.

The most important area to focus on next is the integration
of real-time data and the development of adaptive learning
algorithms. This would enable the system to continuously learn
and adapt to the evolving dynamics of financial narratives,
providing more timely and accurate information. By address-
ing these challenges and focusing on real-time adaptation, the
Financial Narrative Genome has the potential to become a
valuable tool for investors, analysts, and researchers seeking
to navigate the complexities of the modern financial landscape.
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Abstract—Foundational language models show a remarkable
ability to learn new concepts during inference via context data.
However, similar work for images lag behind. To address this
challenge, we introduce FLoWN, a flow matching model that
learns to generate neural network parameters for different tasks.
Our approach models the flow on latent space, while conditioning
the process on context data. Experiments verify that FLoWN
attains various desiderata for a meta-learning model. In addition,
it matches or exceeds baselines on in-distribution tasks, provides
better initializations for classifier training, and is performant
on out-of-distribution few-shot tasks while having a fine-tuning
mechanism to improve performance.

I. INTRODUCTION

Flow matching (FM) [1]-[3] is a prominent fixture in gen-
erative modeling tasks from imaging [2], [4]-[6] to language
[71-[9]. However, its application to neural network weights
remains largely unexplored. In this paper, we introduce Flow-
based Learning of Weights for Neural adaptation (FLoWN), a
new class of method for weight generation. Empirical evalu-
ations validate the following contributions: 1) The generated
weights match or exceed conventionally trained models on
in-distribution tasks, and provide better initializations for fine-
tuning on out-of-distribtion (OOD) tasks, 2) FLoWN is able to
conditionally retrieve pre-trained weights from a distribution
pre-trained on various datasets while matching their perfor-
mance, 3) FLoWN is capable of performing well on OOD few-
shot tasks while having a fine-tuning mechanism to improve
performance.

A. Motivation

Multiple approaches have been tried to generate weights ca-
pable of few-shot learning (FSL), motivated by its speed com-
pared to conventional training. For instance, various diffusion-
based approaches [10]-[12] have been used to generate neural
network weights. However, flexibility is limited by its restric-
tion to Gaussian processes and a sluggish inference speed.

More broadly, we may categorize this form of learning
as meta-learning [13]-[15], which aims to learn concepts
from a few demonstrations. It is therefore natural that we
have two evaluation settings: in-distribution tasks and out-of-
distribution (OOD) tasks. With enough training and capacity,
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Fig. 1. A schematic of the training process of FLoWN for few-shot learning.
Given a set of pre-trained target weights and a support set, we apply the
conditioned flow model to pushforward a sample of the latent prior towards
encoded target weights. The decoder is used during inference where we
start from a sample of the latent prior and pushforward towards the target
distribution with a trained vector field vy (-, t; y) where y is the support set
embedding.

it’s clear meta-models (i.e. models trained on multiple data
distributions) should excel at in-distribution tasks. However,
generalization to novel tasks often presents a challenge to
meta-learning and weight generation frameworks [12], [16].
Addressing this gap — improving a model’s capacity to adapt
beyond it’s training distribution — serves as a key motivation
for our work.

B. Related Works

Numerous strategies have emerged to narrow the out-of-
distribution generalization gap within the realm of meta-
learning and weight generation. One promising approach,
proposed by Soro et al. [10], leverages diffusion-based models
to enhance weight generation. While this method makes strides
in bridging the generalization gap, we find that further im-
provements can be made, particularly by exploring alternative
generative frameworks. Our proposed FLoWN framework
builds on recent advances in conditional flow modeling, neural
network parameter generation, and meta-learning to provide a
more efficient and principled solution. Below, we review key
developments in these areas; for additional context and related
methods, see Appendix A.

a) Conditional Flow Matching: Lipman et al. [2] in-
troduced the CFM objective, which learns probability paths
between distributions using a conditional vector field. By
modifying the coupling of the source and target distributions,
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later work shows better alignment with optimal transport
paths, improving inference efficiency [4]. However, the orig-
inal formulations of flow matching assumed that the initial
distributions were Gaussian. Pooladian et al. [17] extended
the theory to arbitrary source distributions using minibatch
sampling and proved a bound on the variance of the gradient
of the objective.

b) Neural Network Parameter Generation: Denil et al.
[18] showed that most neural network parameters are re-
dundant, enabling weight generation techniques. Ha et al.
[19] introduced Hypernetworks, which generate weights using
neural network layer embeddings. More recently, Wang et al.
[12] and Soro et al. [10] applied latent diffusion models to
parameter generation.

c) Weight Generation for Few-Shot Learning: Few-shot
learning applies meta-learning to scenarios with limited data.
Ravi & Larochelle [20] introduced an LSTM-based meta-
learner for dynamic weight updates. Later works [13]-[15],
[21] leveraged transformers and foundation models. Diffusion
models for weight generation [10]-[12], [22] have gained
attention, though primarily for in-distribution tasks, leaving
OOD adaptation an open challenge.

C. Problem Definition

The problem of interest is that of conditional weight gener-
ation with an application to few-shot learning. Our approach
trains a conditional flow model that can generate neural
network weights tailored to new tasks from minimal data.
At a high level, continuous flows [1]-[3], [23] provide a
way to transform one distribution into another by modeling
the dynamics of an ordinary differential equation (ODE). For
our purposes: 1) We define a reference flow that connects
a simple “source” distribution to the “target” distribution of
interest (in this case, the space of task-specific weights). 2)
A learnable velocity field (parameterized by a neural network
vgp) is trained to match the velocity of this reference flow,
effectively bridging the source and target distributions. 3)
Context-conditioning is used to incorporate information about
the task, such as the support set in an n-way-k-shot FSL setting
(detailed below), so that the generated weights are adapted to
the given task.

In few-shot classification, the standard setup involves n
classes, each with k labeled examples (the “support set”). The
learning system must then generalize to a set of unlabeled
query examples from the same or new distribution. By condi-
tioning the flow model on the support set (and any associated
label embeddings), we aim to generate a set of weights that
perform well immediately, while also allowing further fine-
tuning when facing OOD data.

II. METHODOLOGY
A. Preliminaries

a) Conditional flow models: Chen et al. [23] first intro-
duced continuous normalizing flows as an effective data gen-
eration process through modeling dynamics. Simulation-free
methods improve on this concept by simplifying the training

objective [1]-[3]. Following the formulation of Lipman et al.
[2], given random variables Xy ~ py and X; ~ p; a data
distribution, define a reference flow X = (X{);e0,1] Where
X; = [(iXg + ayX; with the constraint that ag = 81 = 0
and a; = Py = 1. The aim of flow modeling is to learn
a sequence X = (X¢)¢c[o,1) Which has the same marginal
distribution as X. To make this a feasible task, we describe this
process as an ODE: dx; = v(x,t)dt where xg ~ N (0, I).
Training proceeds by first parameterizing v(xy,t) by a neural
network ¢ and matching the reference flow velocity, i.e.
u(xg, t) = %it. This would, however, be an unfeasible
training objective, therefore, we condition on samples from
the terminal distribution x; ~ p; and train

Len(0) = Eiwv0,1] 51 ~pr xempe () | V6 (e, ) —u(xe, £, x|

ey
Lipman et al. [2] proved that this loss produces the same
gradients as the marginal loss, thus optimizing it will result
in convergence to the reference u(x;,t). Moreover, we can
always marginalize an independent conditioning variable y on
vp, u — this will serve as our context conditioning vector.

b) Few-shot learning: The problem of few-shot learning
is often formulated as a n-way-k-shot classification task. In
particular, given n classes and k examples for each class,
S = {(xi,y:)}™*, of (image, label) support set pairs, our
meta-learner is tasked with classifying query set images
Q = {Tpk+1,. .., Tnk+q}- Relevant to our approach, recently,
Fifty et al. [13] proposed an image meta-learning architecture,
CAML, consisting of three components: a frozen pre-trained
image encoder, a class encoder, and a transformer-based
sequence model. ELMES, the class encoder, was shown to
possess two attractive properties: label symmetry and per-
mutation invariance. The transformer sequence model takes
the concatenation of the image and label embeddings of the
support set images, and a special “unknown” label embedding
is used on query set images. These query images are analagous
to the [CLS] tokens in transformers as the logits corresponding
to the query images are then passed into a classifier MLP to
predict labels.

B. Flow to Learn

We describe the components of our approach below, along-
side a method schematic in Figure 1, and leave more details
to Appendix B, C.

a) Weight encoder: Due to the intractable size of weight
space, it is necessary for modeling to take place in latent
space. We justify this design by appealing to work on the
Lottery Ticket Hypothesis [24], [25] as well as the body of
work on pruning [26], which suggests that, like natural data,
neural networks live on a low-dimensional manifold within
its ambient space. We have two encoder variants, first is a
variational autoencoder (VAE) [27] set up as in Soro et al. [10],
and the second is the graph-based encoder (GE) of Kofinas
et al. [28] which takes into account permutation invariance
of neural networks. As the latter models connections between
layers, we only use the VAE for experiments involving subsets
of weights.
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TABLE I
MEAN VALIDATION ACCURACY OF UNCONDITIONAL FLOWN GENERATION. orig DENOTES BASE MODELS TRAINED CONVENTIONALLY AND p-diff THOSE
GENERATED USING P-DIFF [12].

CIFAR100 CIFAR10 MNIST STL10
Base Models orig. FLoWN p-diff. orig. FLoWN p-diff. orig. FLoWN p-diff orig. FLoWN p-diff
Resnet-18 7145 7142 7140 9454 9436 9436 99.68 99.65 99.65 62.00 62.00 62.24
ViT-base 8595 8586 85.85 9820 98.11 98.12 99.41 9938 99.36 96.15 95.77 95.80
ConvNext-tiny 85.06 8512 85.17 98.03 97.89 9790 9942 99.41 9940 9595 95.63 95.63
CNN w/ GE 3209 31.73 31.81 7253 7215 72.09 9893 98.89 98.89 53.88 53.64 53.80
TABLE II tion on classifying its corresponding test set. Table I shows

MEAN VALIDATION ACCURACY OF TOP-5 FLOWN MODEL RETRIEVALS.

Method MNIST F-MNIST CIFAR10 STL10
Original 91.1 72.7 48.7 39.0
FLoWN w/ mIN-prior 63.0 41.9 22.6 18.8
FLoWN 91.7 73.8 50.3 40.8

b) Flow meta-model: The backbone of our meta-learning
framework is a conditional FM model following Tong et al.
[4]. We make use of the flexibility of FM to use a non-
Gaussian prior, specifically the Kaiming uniform or normal
initializations [29], as the source pg. The data distribution
p1 of base model weights is experiment-dependent, however,
broadly they are obtained by conventional training methods or
through a model zoo [30].

c) Conditioning model: To condition our flow meta-
model, we use a pre-trained CAML. Our choice is due to
the extensive training of the CAML architecture on several
datasets as well as the principled label encoding used in their
approach. As we are only interested in encoding the support
set, we consider judicious choices for the query set expected
by CAML. For instance, in the Model Retrieval experiment
below, we simply choose one random image for each class in
the support set. In the FSL experiment, the choice is clear:
the query set of each FSL task. The conditioning vector is
incorporated by concatenating to the latent vector.

III. RESULTS

First, we confirm various properties that are to be expected
of weight generation models. Next, we examine FLoWN’s
performance in few-shot learning. Further details are provided
in Appendix D.

A. Basic Properties of FLoOWN

a) Unconditional generation: We first evaluate the basic
modeling capabilities of the flow meta-model. The target dis-
tribution p; is generated by training a variety of base models
on known datasets: CIFAR-10, CIFAR-100, and MNIST, and
saving 200 weight checkpoints each. For large models, we can
choose to generate only a subset of the weights. In our case,
we generate the batch norm parameters for Resnet-18 [31],
ViT-base [32] and ConvNext-tiny [33], and the full medium-
CNN [30]. The aim of this test is to train a separate meta-
model for each dataset and validate its base model reconstruc-

that we are able to match base models trained conventionally
and with p-diff [12].

b) Model retrieval and in-distribution initialization:
Following [10], we perform model retrieval to test whether
the meta-model can distinguish weights of the base model
given conditioning samples from the dataset the base model
was trained on. The base model is a simple 4-layer ConvNet
and we obtain 100 weight checkpoints from the model zoo
[30] for each dataset: MNIST, Fashion-MNIST (F-MNIST),
CIFAR-10, and STL10 after 46-50 epochs of conventional
training. Unlike in the previous test, we will train just a single
meta-model on 400 total base models conditioned on support
samples from their training set via CAML. During validation,
we pass in a random support sample from one of the four
datasets and generate the full ConvNet. In Table II, we see that
our top-5 validation accuracy matches that of the base models.
Additionally, we repeated this experiment using weights from
mini-Imagenet as a prior, but they seem to perform consider-
ably worse than just Kaiming normal (see Appendix D2 for a
discussion). Next, we repeat this experiment but instead using
weight checkpoints from epochs 21-25, and use the generated
weights as an initialization before fine-tuning another 25
epochs. As shown in Table III, our initialization enjoys faster
convergence, even for datasets on which the model was not
trained, highlighting the generalization capability of our meta-
model.

c) Fine-tuning the meta-model on OOD data: The setting
of unconditional generation is quite restrictive as it is assumed
that the output classifier has the same architecture and is
to be used on the same dataset. In this experiment, we
evaluate whether the meta-model can be effectively fine-tuned
to achieve better performance on out-of-distribution data. We
start with the meta-model trained from unconditional genera-
tion and generate weights for a different dataset. Subsequently,
we compute the cross-entropy loss and backpropagate the gra-
dients through the FM model. As this entails backpropagation
through an ODE solver, we implement a stopgrad mechanism
that restricts gradient flow before a time 0 < ¢’ < 1 to trade
off accuracy for efficiency. Due to time constraints, we restrict
ourselves to batch norms of Resnet-18 and the small-CNN.
Table IV shows considerable improvement over generations
obtained from a static FM meta-model and the VAE.
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TABLE III
MEAN VALIDATION ACCURACY OF FINE-TUNED GENERATED WEIGHTS POST-RETRIEVAL. THE ASTERISK (*) INDICATES DATASETS ON WHICH THE
MODEL WAS NOT TRAINED.

Epoch Method MNIST F-MNIST CIFAR10 STL10 USPS* SVHN* KMNIST#*
RandomlInit ~ 10% ~ 10% ~ 10% ~ 10% ~ 10% ~ 10% ~ 10%

0 FLoWN 83.58 £ 0.58 68.50+0.64 45.934+0.57 35.16+1.24 57.53+2.43 17.99+£0.82 11.79 £0.51
RandomlInit 18.12 £1.58 26.90+0.52 28.75+0.22 18.94+0.09 17.69+0.00 19.50+ 0.03 14.48 +0.06

1 FLoWN 84.49+0.65 69.09+0.40 46.85+0.30 36.15+1.14 72.45+1.81 68.64+7.07 51.15+£8.90
RandomlInit 35.05 £3.87 51.08 +2.15 40.00£0.20 28.24+0.01 32.77+0.46 39.59 +10.0 30.00 = 0.30

5 FLoWN 87.68 +£0.44 70.32+0.50 47.44+0.55 37.43+1.19 76.96+1.29 77.36+1.07 69.14+£10.1
RandomlInit 87.70 £0.90 70.69 +0.46 46.86£0.01 36.75+0.10 82.02+0.12 58.56 £19.5 55.05+0.06

25 FLoWN 92.29+0.41 73.72+£0.68 49.25+0.73 40.14+1.07 8228+1.40 78.75+1.30 79.11 £6.65

50 RandomlInit 92.76 £0.08 72.88 +0.46 48.85+0.74 40.47+0.18 88.35+0.18 63.70 £22.1 64.32+0.25

TABLE IV evaluated FLoWN on just two out-of-distribution datasets: CI-

FINE-TUNING ON OOD DATA. DATA-F ARE RESULTS GENERATED FROM
FINE-TUNED META-MODELS, WHEREAS DATA-S ARE FROM STATIC
META-MODELS. HERE, WE GENERATE THE FULL CNN WEIGHTS,
WHEREAS WE ONLY MODIFY THE BATCH NORMS OF RESNET-18.

ResNet-18 CNN w/ VAE CNN w/ GE
Base dataset CIFARIO STL10 CIFAR10 STL10 CIFARIO STL10
CIFARI10-S - 64.20 - 24.01 - 23.03
CIFARI10-F - 72.87 - 60.09 - 60.85
STL10-S 93.09 - 19.97 - 18.13 -
STL10-F 94.06 - 61.38 - 69.42 -
TABLE V

FEW-SHOT LEARNING ACCURACY ON OUT-OF-DISTRIBUTION TASKS. WE
COMPARE WITH D2NWG AND BEST WEIGHTS GENERATED BY FLOWN.

Model CIFAR-10 STL10
FLoWN-best 73.1 80.4
D2NWG [10] 33.04 £ 0.04 5042 + 0.13
FLoWN 35.84 £ 271 3535 £2.77

B. Few-shot learning

For this evaluation, we utilize mini-Imagenet [34] and Chen
et al. [35] for a Resnet-12 architecture. Following the typical
FSL setting, we partition the dataset into meta-train and meta-
test sets and further into tasks whose size depends on the
way and shot parameters. For instance, for 5-way-1-shot, the
support set consists of one image from 5 different classes
whereas the query set is always 15 images for each of the
5 classes in the support set. The in-distribution test entails
labeling query images from the same dataset (i.e. trained
on mini-Imagenet and evaluated on mini-Imagenet), whereas
OOD tasks entails labeling novel query images. First, we train
the Resnet-12 on the train split of mini-Imagenet; our goal is
thus to generate a classifier head for each task.

In our case, we set 50,000 tasks in the meta-train set and
100 in the meta-test set. We perform this test by constructing
a target distribution using pre-trained weights from Resnet-12,
linear-probing a classifier head on top of the Resnet backbone
for each of the 50,000 subsets for 100 epochs using the
AdamW optimizer with a learning rate of 10~3 and weight
decay of 1072. Given our computational constraints, we

FAR10 and STL10 by sampling weights 50 different times and
taking the average top-3 accuracies. Table V shows that our
method achieves marginal gains on CIFAR10, but performance
on STL10 remains below the baseline. Considering the high
validation accuracies of our VAE, we anticipate that further
training and tinkering will enhance FLoWN generalization
across tasks.

IV. CONCLUSION

In this work, we have provided a preliminary investigation
of FLoWN for weight generation with an application to few-
shot learning. Future research directions include: 1) training
FLoWN on a more comprehensive image dataset to improve
efficacy on OOD tasks, 2) a post-hoc fine-tuning mechanism
[36] for adapting FLoWN to difficult domains (e.g. medical
imaging), 3) incorporating intermediate base model weights
obtained during conventional training to guide the inference
trajectory of generated weights (e.g. via MetricFM [37]).
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APPENDIX

This appendix consist of details left out in the main text.
First, we perform a more comprehensive review of the related
literature with further discussion of our motivations. Next, we
go over the various components of FLOWN and expound on
their implementation and training procedure.

A. Related Works

a) Conditional flow matching: The CFM objective,
where a conditional vector field is regressed to learn prob-
ability paths from a source to target distribution, was first
introduced in Lipman et al. [2]. The CFM objective attempts to
minimize the expected squared loss of a target conditional vec-
tor field (which is conditioned on training data and generates
a desired probability path) and an unconditional neural net-
work. The authors showed that optimizing the CFM objective
is equivalent to optimizing the unconditional FM objective.
Moreover, the further work [4] highlighted that certain choices
of parameters for the probability paths led to the optimal
conditional flow being equivalent to the optimal transport path
between the initial and target data distributions, thus resulting
in shorter inference times. However, the original formulations
of flow matching assumed that the initial distributions were
Gaussian. Pooladian et al. [17] extended the theory to arbitrary
source distributions using minibatch sampling and proved a
bound on the variance of the gradient of the objective. Tong
et al. [4] showed that using the 2-Wasserstein optimal transport
map as the joint probability distribution of the initial and target
data along with straight conditional probability paths results
in a marginal vector field that solves the dynamical optimal
transport problem between the initial and target distributions.

b) Neural network parameter generation: Due to the
flexibility of neural network as function approximators, it is
natural to think that they could be applied to neural network
weights. Denil et al. [18] paved the way for this exploration
as their work provided evidence of the redundancy of most
network parameterizations, hence showing that paramter gen-
eration is a feasible objective. Later, Ha et al. [19] introduced
Hypernetworks which use embeddings of weights of neural
network layers to generate new weights and apply their
approach to dynamic weight generation of RNNs and LSTMs.
A significant portion of our paper’s unconditional parameter
generation section builds upon the ideas from Wang et al. [12]
and the concurrent work of Soro et al. [10] where the authors
employ a latent diffusion model to generate new parameters
for trained image classification networks.

c) Meta-learning context: Although neural networks are
adept at tasks on which they were trained, a common struggle
of networks is generalization to unseen tasks. In contrast,
humans can often learn new tasks when given only a few ex-
amples. A pioneering modern work in this field is MAML [38],
which learns good initialization parameters for the meta-
learner such that it can easily be fine-tuned to new tasks. Their
approach utilizes two nested training loops. The inner loop
computes separate parameters adapted to each of the training
tasks. The outer loop computes the loss using each of these

parameters on their respective tasks and updates the model’s
parameters through gradient descent. However, MAML often
had unstable training runs, and so successive works gradu-
ally refined the method [39]-[42]. The aforementioned works
typically focus on classification tasks, however, this paradigm
allows for great versatility. For instance, Beck et al. [43] used
hypernetworks to generate the parameters of a policy model
and Lee et al. [44] exploited the in-context learning ability of
transformers to general reinforcement learning tasks.

d) Weight generation for few-shot learning: Following
up on the work of meta-learning context, few-shot learning
is a natural application of such meta-learning algorithms. An
early example is Ravi & Larochelle [20] who designed a
meta-learner based on the computations in an LSTM cell. At
each training example in the support set, their meta learner
uses the losses and the gradients of the losses of the base
learner (in addition to other information from previous training
examples) to produce base learner parameters for the next
training example. The loss of the base learner on the test
examples in the support set is backpropagated through the
meta learner’s parameters. Moreover, we may leverage the
advancements in generative modeling for weight generation.
As we mentioned, Lee et al. [44] used transformers for in-
context reinforcement learning, but we also see the works of
Zhmoginov et al. [15]; Hu et al. [14]; Kirsch et al. [21];
Fifty et al. [13] use transformers and foundation models.
More similar to our method is the body of work on using
diffusion models for weight generation [10]-[12], [22]. These
methods vary in their approach, some leveraging a relationship
between the gradient descent algorithm and the denoising step
in diffusion models to design their meta-learning algorithm.
Others rely on the modeling capabilities of conditioned latent
diffusion models to learn the target distribution of weights.
Most evaluations conducted were in-distribution tasks, i.e.
tasks sampled from the same data distribution as the training
tasks, hence, there is room to explore ways of adapting this
approach for out-of-distribution tasks.

B. Architecture Details

Here, we expound on the architecture of FLoWN. See
Figure 1 for a schematic of the training and inference process.

1) Variational Autoencoder: The variational autoencoder
follows the implementation of Soro et al. [10]. In particular,
given a set of model weights {M;}Y |, we first flatten the
weights to obtain vectors w; € R% . For the sake of uniformity,
we always zero-pad vectors to d = max; d;. Alternatively, we
allow for layer-wise vectorization: set a chunk size ¢ which
corresponds to the weight dimension of a network layer. Then,
zero-pad w; to be a multiple of ¢, say d. This allows us to
partition into k equal length vectors w; j € RY/*. Typically,
larger models benefit from layer-wise vectorization.

Subsequently, we train a VAE to obtain an embedding of
such vectors by optimizing the objective:

Lvae(0, @) := —Eq(z|w) [log po(w]z)+BDk L (g4 (z|w)|[p(2))]

@)
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where w is the vectorized weights, z is the embedding we
are learning, and py, qs are the reconstruction and posterior
distributions respectively. Moreover, we fix the prior p(z) to
be a Gaussian and the weight is set to be 3 = 10~2. For layer-
wise vectorization, we simply change the input dimensions
to match the chunk size. Upon decoding, we concatenate the
chunks to re-form the weight vector.

2) Graph Encoder: Recently, Kofinas et al. [28] proposed
a neural graph encoder which incorporates the permutation
invariance present in network weights. The method has two
components: a graph constructor and the embedding model.
The neural network is first represented as a graph where nodes
represent the neurons within each network layer and edges
represent neuronal connections. Importantly, node features
correspond to bias parameters and edge features correspond to
weight parameters. Subsequently, this is fed into an embedding
model, such as a GNN, specifically PNA [45], or a relational
transformer [46]. For our use case, we outline weights-to-
graphs conversion of MLPs, CNNs, and normalization layers.
See Kofinas et al. [28] for more details.

a) MLPs to graphs: Let G(V,E) be a graph and let
the vertex set V' € R"*9v and the adjacency matrix E €
R™*7xde TIntuitively, if we have n nodes in a graph, our
vertex set is size n, and the adjacency matrix is 7 X n. In
our case, we also incorporate node and edge features, hence
an extra dimension is added. Consider an L-layer MLP with
weights {W* € Réexde-1}L - and biases {b* € R¥“}L_ .
Since we have a node for each neuron, we have n = > r—0 Qe
where dj is the input dimension. Now, let’s use these to con-
struct the vertex set V. Since each neuron has a corresponding
bias term (except the input), V = [04, b! br]T. As
for the adjacency matrix, consider the first dy rows: as this
corresponds to the input layer, it’s only connected to the first
layer, i.e. only columns dy + 1 to dy + d; are possibly non-
zero. And if we focus on row ¢ € [dy], what are its features?
They must be Wll Hence,

(E[Odg] X [d0+1,d0+d1] )T = W17

and elsewhere in Ejg.q, is zero. In general,

(E[di—lidz‘]x [(17‘,—1+1,d7‘,—1+di])—r = Wi’

and is zero everywhere else. In other words, the first off-
diagonal blocks are precisely W, and E is zero elsewhere.
Finally, what are dg and dy ? This turns out to be problem-
dependent. Sometimes, it helps to add useful node features,
but if the only thing we are concerned about embedding is
weight information, then each entry of W and b is simply
a scalar, so dg = dy = 1.

b) Normalization layers to graphs: Either BatchNorm
or LayerNorm can be written as y = m ® x + b, where
m,x,b,y € R% The trick is to recast this as a linear layer:
we can always write y = diag(m)x + b. Hence, we ought
to have d nodes for  and another d nodes for y where the
nodes for y have biases b. The two layers are then connected
by weight matrix diag(m) which only connects x; to y;.

TABLE VI
MODEL ARCHITECTURES AND HYPERPARAMETERS. SQUARE BRACKETS
[] INDICATES AN INTERVAL OF VALUES. FOR INSTANCE, WE OFTEN TRAIN
UNTIL A LOSS PLATEAU, HENCE THE VARYING NUMBER OF EPOCHS.

Parameters Model Retrieval Few-Shot Learning

Dataset Encoder (Frozen)

Architecture CAML CAML
Latent Dimension 1024 1024
Weight Encoder
Architecture VAE VAE
Latent Space Size 4x4x4 4x8x8
Upsampling/Downsampling Layers 5 4
Channel Multiplication (per Downsampling Layer) (1, 1, 2, 2, 2) (1,1,2,2)
ResNet Blocks (per Layer) 2 2
KL-Divergence Weight 0.01 le-6
Optimizer AdamW AdamW
Learning Rate 1x1073 1x1072
Weight Decay 2x 1076 2x 1076

Batch Size 32 128

Training Epochs 3000 [100, 500]
Conditional Flow Matching Model

Timestep and Dataset Embedding Size 128 128

Input Size 4x4x4 4x8x8

Optimizer AdamW AdamW

Learning Rate 1x1073 2x 1074

Weight Decay 2x 106 2x 106

Batch Size 32 128
Training Epochs [3000, 10000] [100, 500]

c¢) CNNs to graphs: To simplify consider one convo-
lutional layer between layers ¢ — 1 and ¢, namely W €
Rexde—1xwexhe and b € R, Intuitively, dy_; is the number
of input channels and d; the number of output channels. Due to
the spatial dimension w, x hy, we first flatten the last two lay-
ers. Now, we make use of the node and edge features: instead
of scalar weights like in linear layers, our weights are vectors
of size wy X hy. However, the size may be different between
layers, so we take s = (maxye[z) we, maxyc(r) he) and zero-
pad our weight vectors as necessary before flattening. Hence,
following the procedure in the MLP conversion, we form an
adjacency matrix with vector features, i.e. E € RP*"xde
where dg = WmaxPmax-

3) Flow Model: The neural network used for flow matching
is the UNet from D2NWG [10]. The specific hyperparameters
used for the CFM model varies between experiments, so we
leave this discussion to D.

C. Training Details

Here, we present further training and experimental details.
1) Pre-trained Model Acquisition:
a) Datasets and architectures: We conduct experiments
on a wide range of datasets, including CIFAR-10/100 [47],
STL-10 [48], (Fashion/K)-MNIST [49], [50], USPS [51], and
SVHN [52]. To evaluate our meta-model’s ability to generate
new subsets of network parameters, we conduct experiments
on ResNet-18 [31], ViT-Base [32], ConvNeXt-Tiny [33], the
latter two are sourced from timm Wightman [53]. As we shall
detail below, small CNN architectures from a model zoo [30]
are also used for full-model generations.
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TABLE VII
PREPROCESSING AND GRAPH ENCODER HYPERPARAMETERS.

Parameters Values

Dataset Preprocessing

Input Channels 3
Image shape (32, 32)
(Wmax, hmax) (7,7)
Max. spatial res. 49
Max. # hidden layers 5
Flattening Method Repeat Nodes
Normalize False
Augmentation False
Linear as Conv. False

Relational Transformer

Embed dim. 64
Num. layers 4
Num. heads 8
Num. probe features 0

b) Model pre-training: For better control over the target
distribution p;, in experiments involving ResNet-18, ViT-
Base, and ConvNeXt-Tiny, we pre-train these base models
from scratch on their respective datasets. We follow Wang
et al. [12] and train the base models until their accuracy
stabilizes. Further, we train the relevant subset (e.g. batch norm
parameters for ResNet-18) for another 200 epochs, saving the
weights at the end.

¢) Model zoo: The model zoo used for meta-training
in the model retrieval setting, as described in Sec. III-AQc,
was sourced from [30]. As the base model, we employed
their CNN-small architecture, which consists of three con-
volutional layers and contains either 2,464 or 2,864 pa-
rameters, depending on the number of input channels.
For each dataset—MNIST, Fashion-MNIST, CIFAR-10, and
STL10—100 sets of pre-trained weights were randomly se-
lected from the model zoo using different seeds and fixed hy-
perparameters (referred to as ”Seed” in their codebase). For the
training of base models, we adopted the same hyperparameters
as those used in [30] for all datasets, except KMNIST, which
was not included in their model zoo. For KMNIST, we used
the hyperparameters applied to MNIST, given the similarity
between the two datasets.

2) Variational Autoencoder Training: The VAE was trained
with the objective in equation 2. Moreover, following p-diff
[12], we add Gaussian noise to the input and latent vector, i.e.
given noise factors o, and o4 With encoder f, and decoder
fo, we instead have

z = f¢(w +€in); w = f(')(z + glat)

where fin ~ N(Ov UiZnI)a flat ~ N(O’ gl2atI)'

A new VAE is trained at every instantiation of the CFM
model as architectures often differ in their input dimension for
different experiments. However, they are trained with different
objectives: the VAE is trained to minimize reconstruction loss.
In all experiments, we fix o;, = 0.001 and 0,4 = 0.5.

TABLE VIII
TASK TRAINING

Parameters ResNetl8 ViT & ConvNext CNN
Optimizer SGD AdamW AdamW
Initial Training LR 0.1 1x107% 3x 1073

Training Scheduler MultiStepLR  CosineAnnealingLR CosineAnnealingLR

Layer Weights Saved Last 2 BN layers Last 2 BN layers All layers
Initial Model Saving LR 1.6 x 1074 5x 1072 1x 1073
Model Saving Scheduler None CosineAnnealingLR CosineAnnealingLR
Number of Models Saved 200 200 200

Num. of Weights per Model 2048 3072 [10565, 12743]
Training Epochs 100 100 100

Batch Size 64 128 128

3) Graph Encoder Training: The graph encoder [28] was
used for both the unconditional generation and fine-tuning
on OOD experiments with the CNN-medium architecture
from Schiirholt et al. [30]. We restricted our tests to the
relational transformer [46] which was shown to perform better
in the original paper [28]. See Table VII for the instantiation
parameters.

D. Experimental Details

1) Unconditional Generation: Unconditional generation in-
volves two stages: first is the training of base models. We
choose a Resnetl8, ViT-B, ConvNext-tiny, and medium-CNN
for our base models and provide the training parameters in
Table VIII. Next, is the stage where we train either a AE-CFM
or AE-DDPM, with the encoder being the same in both cases;
the training parameters for this stage is provided in Table IX.

2) Model Retrieval: The first column of Table VI shows the
details of the model architectures and training configurations.
For each dataset, we first generate its CAML embedding
by (1) averaging the query image embeddings within each
class to get class embeddings, (2) concatenating the class
embeddings into one long vector, (3) passing the combined
class embeddings through two linear layers to produce the final
dataset embedding. Next, the dataset embedding is combined
with the timestep embedding via a projection layer, and the
resulting representation is used as input to the flow matching
model.

a) A mini-Imagenet prior for CFM: As mentioned in
Sec. III-AOc, we attempted this experiment with priors from
a pre-trained mini-Imagenet. There were a few technical
hurdles with the implantation of these weights. First, for 1-
channel datasets such as MNIST, the input weight shapes
are smaller than those of the mini-Imagenet model. Second,
the classification head of a mini-Imagenet model predicts a
much greater number of classes than our test datasets. Our
procedure is as follows: we train a small-CNN model [30]
on mini-Imagenet until its accuracy stabilizes. Next, we take
the mean g and standard deviation o of its classifier head.
Using these statistics, we initialized the classifier heads of our
base models as N (u,02I). For the rest of the base model,
we pad to the prior’s shape if necessary, and we implant the
pre-trained weights directly before adding Gaussian N'(0,T)
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TABLE IX

CFM/DDPM

Parameters AE CFM AE DDPM
Flow/Diffusion Optimizer =~ AdamW AdamW
Flow/Diffusion LR 0.001 0.001
Autoencoder Optimizer AdamW AdamW
Num Inference Timesteps 100 [100, 1000]
Autoencoder LR 0.001 0.001
Weight Initialization Kaiming Normal

Autoencoder Epochs
CFM/DDPM Epochs
Batch Size

[1000, 30000] [1000, 30000]
[1000, 30000] [1000, 30000]
[50, 200] [50, 200]

noise. Since we flow in latent space, our last step is to apply
the VAE to the weights we’ve constructed.

Figure 2 shows the training curve with our mini-Imagenet
prior in blue, and with a Gaussian 0-1 prior in orange. It is
striking that the loss decreases much faster, but as seen in
Table II, the test accuracies are quite poor. This points to
an issue such as overfitting, which is likely caused by latent
space capacity. Indeed, with our approach of constructing the
prior, we invoke the VAE encoder twice: once to encode the
prior and once more to encode the target weights. The target
weights were those pre-trained on one of the four datasets
in Table II, hence it’s expected that the distribution is quite
distinct from those pre-trained on mini-Imagenet. Due to the
size of our latent space (64, as noted in Table VI), it may be
insufficient to encode both distributions. Moreover, the loss
objective for encoding the prior is not ideal. As the encoder
is invoked in forward passes of the CFM, it only learns how
to encode the prior such that CFM loss decreases, as opposed
to a reconstruction objective. Hence, future work could look
to modify encoder training so as to reconstruct both target
weights and weights of the prior.

train_loss

— with_prior
without_prior

Value

0.2

0.0

30000 40000 50000 60000 70000
step

Fig. 2. The training loss curve for the mini-Imagenet run from Table II.

3) Few-Shot Learning: For the few-shot learning exper-
iments, we adopted the same methodology for obtaining
dataset embeddings and conditioning parameter generation
as in the model retrieval experiment. Classifier heads were
trained on 50,000 randomly sampled 5-way 1-shot subsets of
the mini-ImageNet dataset [34], and the resulting pre-trained
weights were used as training data for the meta-model. The
hyperparameter configurations for meta-training are provided

TABLE X
FINETUNING

Parameters ResNet18 CNN
Optimizer AdamW AdamW
Num Epochs [50,100] [50, 100]
Initial LR~ 1 x 1072 1x 1072
Detach Value 0.4 0.4

LR Scheduler None CosineAnnealinglL.R
Minimum LR 1 x 1072 5x 1077

in the second column of Table VI. During evaluation, we
measured the accuracies of the generated models on two
out-of-distribution datasets, CIFAR-10 and STL-10. For each
subset, we sampled 50 sets of weights and reported the average
accuracy of the top three performing models.

4) Fine-tuning on Out-of-Distribution Data: We provide
the hyperparameters of the fine-tuning experiment in Table X.
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Abstract—The rapid expansion of music Al technologies has
led to the extensive use of large-scale datasets that often include
copyrighted music without adequate oversight. Current legal
and technical frameworks struggle to identify and quantify
such copyrighted content, resulting in the under-compensation of
copyright holders and potential violations of intellectual property
rights. This study implements a unique approach to copyright
detection. Utilizing federated learning (FL), our method trains
models locally, preserving data privacy by keeping sensitive in-
formation on local servers while aggregating model updates cen-
trally. Additionally, model fingerprinting assigns unique digital
signatures to training data outputs, enabling precise tracking and
verification of copyrighted material. Leveraging these techniques,
our framework compiles a comprehensive catalog of artists and
quantifies the number of songs present in the dataset, which
is then integrated into our compensation mechanism to ensure
fair remuneration for copyright holders. Our solution enhances
transparency in data usage while delivering mutual benefits for
both AI developers and creators, incentivizing a cooperative
musical landscape where AI and creativity coexist.

I. INTRODUCTION

In April 2023, an unknown Tik Tok user called Ghost-
writer977 released a song on Spotify and Apple Music called
“Heart on My Sleeve” that would greatly influence the music
industry. Generative music Al claimed the spotlight in music
innovation with the release of this song, featuring Drake and
The Weeknd. The only complication, however, is that neither
Drake nor The Weeknd ever sang a single note for this track.
This was one of the first documented instances of generative
music Al being used to create music that became a major
worldwide hit, and many more have come since. The Al was
trained on copyrighted music, and the artists and their record
label, Universal Music Group (UMG) were never compensated
for the use of their music in the training of this Al. Al creators
and artists in music, visual arts, and other fields face the
challenge of insufficient copyright laws governing AI. This
lack of law and policy leads to intense legal battles, such is
the case in Suno & Udio Vs. UMG, Warner Records, and Sony
Records. The use of copyrighted music to train generative

music Al by Suno and Udio, while not technically against
any specific laws, has led three of the world’s largest music
licensers to sue them. If this discrepancy is not fixed, then
those working in creative professions will continue to have
their works used without their consent to train Al. This will
inevitably lead to a loss of jobs due to this software, the
program that was trained on their own works.

With the recent developments in Al, law and policy fall further
behind, Al companies seem to be able to skirt the law for their
own personal, monetary gain. The datasets are not monitored
and are kept private by most Al companies, meaning that there
is no way for the government or creative industries to get a
hold of the datasets without legal action. On top of this, the
creative professionals and those who own the works are not
getting compensated for the use of their works. Al developers
need huge amounts of data in order to properly train their Al,
and this often leads to the usage of copyrighted works. If one
Al company is using copyrighted works, then would it put
the other Al company at a disadvantage to not do the same,
especially when there is no specific law against this use? Al
is a rapidly developing field, and every company is striving
for the highest quality product to offer their users.

Both sides have an argument to be made, and until legal
precedent is set, these two industries are poised to fight against
each other. The questions this paper aims to answer are: How
should copyright law be adapted to fit generative Al and should
artists and record labels be compensated for the use of their
works in the training of generative AI?

II. BACKGROUND INFORMATION

“Heart on My Sleeve” was not the only case of Al-generated
songs making their way into the public music scene [1]. UMG
and other major record labels were starting to catch on that
these Al used thousands of copyrighted music to train them
[2]. This act, they claim, constitutes “copyright infringement
on an almost unimaginable scale” [3]. To understand this
claim, we will provide you with background context into the
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training and usage of generative music Al software, copyright
law, and the current legal landscape of relevant cases.

A. How Generative Music Al is Trained

Generative music Al begins by collecting datasets of musi-
cal elements, such as chords, melodies, rhythms, and timbres.
These datasets often consist of music files in formats like MIDI
or audio recordings in WAV or MP3. MIDI files are widely
used due to their ability to represent music as a sequence of
notes with information about pitch and velocity, which are
easier for Al models to analyze and learn from [4].

The preprocessing stage of generative music Al involves
converting audio waveforms into spectrograms. These graphs
visually represent the frequency content of sound over time
and almost act like a “map” that Al can use to analyze pat-
terns or specific frequencies. Commonly, Short-Time Fourier
Transforms (STFT) are used to convert audio waveforms into
a time-frequency representation. As a result, the spectrogram’s
X-axis represents time, the y-axis represents frequency, and the
color intensity represents amplitude, as seen in 3. For example,
a bass-heavy song with deep male voices will have stronger
signals in the lower-frequency range [5].

Frequency —»

Fig. 1. Spectrogram Representation of a Four-Second Audio Signal [5])

Then, these spectrograms are used as input to convolutional
neural networks (CNNs), which are specialized for recog-
nizing spatial patterns in visual data. As spectrograms pass
through a CNN, they are compressed into lower-dimensional
feature vectors that represent musical characteristics like chord
progressions and melodic motifs. Thus, instead of processing
the entire spectrogram at once, CNNs process it frame-by-
frame, generating sequential data corresponding to different
time steps. These vectors retain essential information while
reducing complexity, making them more suitable for training
models that require sequential inputs.

Once the model is trained, the Al generates new music using
algorithms that are based on the patterns it learned. Algorithms
are essentially sets of rules or instructions that the Al follows
to perform tasks. Once the music is made, the output can then
be converted into formats for playback such as WAV or MP3.

B. Legal Landscape

The current legal landscape of Al is extremely volatile and
still developing. Current cases on the court docket are bound
shape the future of Al policy by setting important precedent.
The current legal system is trying to determine how to adapt
current copyright laws and policies to Al systems, specifically
generative Al systems. To first understand the legal landscape,
we will introduce you to the type of law that this paper deals
with: copyright law.

1) Copyright Law: Copyright law exists to protect creative
works around the world, but what exactly is defined under
the scope of “creative work”? Creative works aim to define
the expression of creative ideas but not the systems/processes
used to derive these ideas: “Copyright protects expression,
and never ideas, procedures, methods, systems, processes,
concepts, principles, or discoveries” [6]. As such, copyright
protects an instance of a creative work, for example, a song,
painting, or distinct brand logos, but never to protect a
process of creating a work. For example, Lord of the Rings
is a copyrighted work by author J.R.R. Tolkien, however the
brainstorming methods and writing techniques that Tolkien
used are not protected under copyright. There are exemptions
in which copyrighted works are allowed to be used without
expressed consent from the copyright owner, and this is a
staple of copyright law known as the Fair Use Doctrine. The
Fair Use Doctrine promotes freedom of expression by allowing
the use of copyrighted materials under specific circumstances.
Copyrighted works may be used without consent in cases of
criticism, teaching, research, and news reporting, to name a
few [7]. The criteria in which Fair Use is evaluated are:

1. Purpose and usage of the copyrighted work: Copy-

righted works used in a non-profit educational and non-

commercial manner are much more likely to be classified as
fair. Similarly, transformative uses (adding something new
or changing something with a further purpose) are more

likely to be classified as fair [7].

2. Nature of copyrighted work: Many types of works can

be copyrighted, each with varying levels of creativity. Using

works that are considered more creative such as songs,
movies, and art are less likely to be classified as fair than
factual work, as this relates to the premise of encouraging

creative expression in copyright law [7].

3. Proportional amount of copyright used: If the use of

copyright materials is found to have copied a large portion

of the copyrighted work, then it is less likely to be classified

as fair [7].

4. Effect of the use upon the potential market for or

value of the copyrighted work: If the use of copyrighted

works is competing in the same market as the original work,
then courts must consider the potential effect to the market
upon widespread use of the created work.
A key distinction to be made in the writing of these metrics
is that every use must be evaluated on a case-to-case basis.
The wording implies that even though specific uses are “more
likely” or “less likely” to be considered fair use, each case
is unique and requires specific interpretation of the law [7].
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A central challenge in the current system is that standardized
licensing agreements for Al-generated music is lacking. There
is no clear framework for licensing rights, which given Al
creators and user challenges in legally using or distributing Al-
generated works. To add to that, the application of fair use to
generative Al music is uncertain, especially regarding whether
Al-generated compositions are “transformative” enough to
qualify as fair use. Given that these models often are trained
with extensive use of copyrighted materials, courts may have
difficulty consistently applying fair use to these cases, as we
will show in the two cases coming up: Suno-Udio and Stability
Al [5] [8].

2) Relevant Cases: The legal landscape is bound to shape
the future of generative music Al. As technology makes further
progress, policy struggles to catch up. Current court cases
will ultimately determine the future of the generative Al field,
and as such, it is vital to understand past and present court
proceedings. In this section, we aim to present what we believe
to be the two most important cases, ongoing and present to
paint a picture of the current legal landscape surrounding
generative Al
Case 1: Suno and Udio v. UMG, Sony Music Entertain-
ment, Warner Records, et al. (2024)

The most relevant case to the discussion of copyright law
regarding generative Al music is an ongoing case, between
generative Al music companies Suno and Udio, and record
label titans Universal, Warner, and Sony. First filed on June
24th, 2024, the three labels filed federal lawsuits in New York
and Massachusetts against the two startups. They allege that
Suno and Udio were involved in mass copyright infringement
by using popular songs, such as The Temptations’ “My Girl”,
Mariah Carey’s “All I Want for Christmas Is You,” and James
Brown’s “I Got You (I Feel Good)”, to train their AI models.
These models would then be able to create music on demand
and can mimic iconic artists such as Michael Jackson, Bruce
Springsteen, and ABBA [1].

The defense of the startups was that they allege that their
Al training systems fall under “fair use,” which would permit
them limited use of copyrighted works without authorization.
Suno’s CEO, Mikey Shulman, emphasized the transforma-
tive nature of their technology, arguing that it generates
“completely new outputs” rather than simply “regurgitating”
existing songs. They also assert that their systems analyze
patterns in music, rather than memorizing specific content,
which allows users to create original music based on text
prompts [9].

The record labels on the other hand, argue that this use of
their music is unlicensed and amounts to willful infringement,
potentially resulting in Al-generated songs that “cheapen”
the original works by offering near-identical imitations. The
labels are particularly concerned about the AI’s ability to
reproduce specific musical elements and even simulate artist-
specific vocal styles. Mitch Glazier, CEO of the Recording
Industry Association of America, criticized unlicensed services
like Suno and Udio, arguing that they are exploiting artists’
work without fair compensation, which he argues could hinder

genuine innovation in Al [9].

The labels are seeking statutory damages of up to $150,000
for each song allegedly copied. According to the lawsuits,
Suno is accused of copying 662 songs in training its Al
model, while Udio allegedly used 1,670. This totals to a
lawsuit of just under $350 million in damages. The labels
also demand full disclosure of the training datasets used
by the companies, accusing them of being “deliberately
evasive” about the material, which, if revealed, they argue
could constitute “willful copyright infringement on an almost
unimaginable scale” [9].

Case 2: Getty Images v. Stability AI (2023)

Another case of importance in the realm of copyright law
is the case between the stock photo provider Getty Images,
and the creator of the AI model Stable Diffusion, Stability
Al Filed in February 2023 in Delaware, Getty Images alleges
that Stability Al used more than 12 million of its copyrighted
images to train Stable Diffusion without a license, which they
argue constitutes copyright infringement. Stability Al allegedly
did not seek or obtain a license to use these images, which
Getty claims could have been acquired under established
licensing agreements, as has been done by other technology
companies [10].

Moreover, Stability’s model sometimes generated images
displaying Getty’s watermark, which Getty argues could lead
to consumer confusion and devalue its brand. This has
prompted Getty to include watermark infringement alongside
its copyright allegations. Getty is seeking both financial dam-
ages, including Stability’s profits from the alleged infringe-
ment, and an injunction to stop Stability Al from using its
images.

This case also provides more critical legal questions about
whether Al companies need explicit licensing to use copy-
righted material for training, especially as these companies
compete with traditional creative industries. Getty’s lawsuit
also brings up risks of Al-generated content displaying water-
marks, which is applicable to generative Al in music if these
Al tracks are associated with specific artists or labels [10].

III. KEY ISSUES AND CHALLENGES

The key issues and challenges in adapting copyright law
to Al stem from an outdated legal framework that wasn’t
designed for machine-generated content and the rapid pace
of technological change. Current laws struggle with defining
authorship, determining originality, and reconciling the use of
vast, often copyrighted datasets by Al developers. This section
explores how these legal uncertainties intersect with the need
to fairly compensate artists and protect intellectual property
while still encouraging innovation in the Al space.

A. Adapting Copyright Law for Al

The complexity of Al and its uses have led to a complex
implementation of copyright law in Al. At this time, judicial
systems around the world struggle to adapt copyright laws to
Al Legal frameworks must adapt to these new technologies,
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but they are struggling to address key topics such as authorship
and originality. These topics cover questions such as:

1. Who is considered to be the author when Al creates

content — the developer, the user, or the Al itself?

2. Traditional copyright laws require artists to use a degree

of human creativity when creating a new product. Do Al-

generated outputs meet that standard of creativity?
Policy has fallen behind the rapid development of Al systems
and will likely continue to do so. If lawyers and litigators were
able to predict how Al may evolve, they could pre-emptively
address these solutions, allowing policy to have more dictation
over how Al systems are created.

To address the complexities of Al-generated works, new
laws must be introduced to handle this unfamiliar territory.
There are many different mechanisms into which laws could
be adapted, all of which come with their own challenges in
implementation. The first of which is an AI Transparency
and Attribution framework, where the disclosure of dataset
sources and attribution for Al-generated outputs resembles
those for specific copyrighted works. However, the issue arises
while balancing transparency with protecting Al trade secrets,
something which current Al companies are trying their best
to maintain private.

Another option is introducing levy-based fees, where a
levy is applied on AI tools or datasets with the goal of
creating a compensation pool for copyright holders. This
option also comes with some limitations as fair distribution
among creators is challenging to determine, and Al developers
may resist due to increased costs on their operations.

The third is to create licensing agreements where Al devel-
opers would need to obtain licenses for copyrighted works
in training datasets. These could adopt collective licensing
models similar to those for radio and streaming. This idea also
has its downsides as these agreements could lead to complex
negotiations, particularly for smaller developers. Alongside
that issue, high licensing costs could help stifle Al innovation
as higher operating costs due to these licenses could prevent
Al companies from growing.

B. Compensating Artists

The recent spike in integrating generative Al to music
production has presented many issues in compensating artists
whose works are used as training data for these models.
The primary concern is the lack of legal frameworks that
would mandate compensation for artists when their music
is used to train AIl. This ambiguity allows Al companies
to use copyrighted songs without proper licenses to develop
their software. This has led to major record labels like UMG
and Warner to file lawsuits against Al startups such as Suno
and Udio, alleging illegal use of their music libraries for Al
training [11].

However, implementing a fair compensation model faces
several challenges and a fundamental paradox. For artists to be
compensated, Al training data must be public and transparent,
yet full transparency is impractical because of privacy risks
and societal concerns. If datasets were to remain closed, artists

cannot verify if their work has been used. If datasets were fully
disclosed, this could pose significant societal risks. Publicly
available datasets might enable the copying of AI models,
leading to intellectual property theft. Too much transparency
would also slow innovation and hurt the generative music
Al industry by making it harder for companies to attract
investment and stay competitive. This could also hurt their
growth, as competitors could use their datasets, making it
harder for companies to stand out in this niche market. This
paradox reveals a no-win situation of developers, artists, and
policymakers. Either prioritize accountability and fair com-
pensation while putting innovation and security in jeopardy or
protect Al companies and their datasets and prevent misuse at
the cost of artists’ rights. This dilemma underlines the need
for a middle ground where artists can be compensated while
Al can stay protected.

On the other hand, Al companies resist compensating artists
by arguing that their use of copyrighted training data is
transformative and is under the doctrine of fair use. For
instance, companies Suno and Udio claim that their Al does
not copy material but analyzes them for patterns. Some argue
that fair use promotes freedom of expression by allowing
companies and people unauthorized use of copyright-protected
works under certain circumstances, with the main focus falling
on transformative works [3]. Fair use is often a legal gray
area, as each case is unique in its usages of copyrighted
materials and thus, considerations change. This defense allows
Al companies to justify their practices on uncharted ground,
without knowing with certainty if what they are doing is legal
or not.

C. Dataset Transparency

Generative Al models are generally trained on vast amounts
of data. Suno has admitted to training on “tens of millions of
recordings” [12]. Generally, the more data used to train the
model, the better [13]. However, it is difficult to garner all the
data you need while staying copyright free. This leads to a
fundamental tension: Al companies need data but want to keep
the challenging dynamic between transparency and protecting
their competitive advantages. From a business perspective,
the Al company’s datasets represent significant competitive
advantages and intellectual property, including the works they
use and the specific data being utilized. Revealing detailed
information about training data could potentially compromise
their market position or expose them to competitors and those
who believe their work does not constitute fair use. Currently,
some companies have taken steps toward transparency by
publishing limited information about their training data or
working with specific rights holders [14] [6] [7]. Most other
companies, however, maintain strict privacy. To deal with this,
other methods of detecting the use of copyrighted music may
be a better method to deal with the situation. These ideas are
discussed in more detail below.
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D. Detecting the Use of Copyrighted Music

Instead of having to detect the use of copyrighted music in
generate music Al, many methods revolve around protecting
the original music. Audio fingerprinting adds a unique iden-
tifier to a copyrighted piece of music, very much comparable
to how humans each have unique fingerprints identifying
themselves. In music, these identifiers are used by services
like Shazam to identify songs. In the case of generative music
Al if an original piece and its identifier are used in training
data, it is possible that the fingerprint gets carried over to
the newly generated music. Then, this would be an indication
that copyrighted music had been used to generate music [15].
Although, if the generative music Al startups act according
to their affirmations and only incorporate subtle patterns from
source material, then this makes fingerprinting less effective.
Similarly, a watermark code can be embedded into copyrighted
music to protect it for misuse. But models can easily transform
input data to obscure the watermark or even learn to ignore
such codes.

Alternatively, algorithmic similarity analysis is a technique
that uses machine learning to analyze patterns and any simi-
larities between generative music Al and copyrighted songs.
This method starts by extracting features from both works
such as melody, harmony, and rhythm. Once extracted, fea-
tures are then represented in a high-dimensional space using
embeddings. Think of an embedding as a unique location or
“coordinate” for each piece in a multi-dimensional space. An
easy application of this topic can be made to books in a vast
library that are placed across a giant map. Their “coordinates”
could be defined by their characteristics, such as length of the
book, writing style, language, etc., and each trait is represented
numerically. Similarly, for algorithmic similarity analysis in
music, their features are numerical represented as embeddings
using machine learning algorithms and are then placed on
this giant high-dimensional space. Finally, this would mean
that music with similar features, thus similar “coordinates”,
naturally cluster together. In further detail, the distance be-
tween two embeddings—such as an Al-generated song and
an original piece—can be measured. Common measurements
in a similarity metric are cosine similarity (which compares
angles), and Euclidean distance (which measures straight-line
difference). If the distance between them passes a set thresh-
old, it may suggest that the Al-generated song was influence
by or trained on the original piece. However, this method has
limitations. Think of a ChatGPT detector that might detect a
paragraph having a 70% chance it was generated using Al
This detector operates on probability rather than certainty. Al-
gorithmic similarity analysis shares these philosophical issues.
If a system determines there is a 70% similarity between an
Al-generated song and a copyrighted song, does that draw
any certain conclusions? Music inherently shares common
structures, like commonly used chord progressions or similar
piece structure. As a result, using this technique in lawsuits
remains controversial.

IV. CASE STUDY: [SUNO V. UMG, SONY MUSIC
ENTERTAINMENT, WARNER RECORDS, ET AL.]

Suno v. UMG, Sony Music Entertainment, and Warner
Records stands as one of the most pivotal cases in shaping how
copyright law applies to Al-generated music. First filed in mid-
2024, the lawsuit revolves around allegations that Suno used
copyrighted tracks to train its generative music Al without
proper licensing. The dispute underscores core questions about
fair use, authorship, and the extent to which Al can transform
existing creative works. By analyzing both the plaintiffs’ and
defendants’ perspectives, this case study highlights the legal
complexities and potential industry-wide repercussions of Al-
driven content creation.

A. Case Timeline

On June 24, 2024, the Plaintiffs, comprised of major record
labels such as UMG, Sony Music, Warner Records, Capitol
Records, Atlantic Records, and more, filed their initial com-
plaint against Suno. The initial complaint included evidence
that Suno was using copyrighted music, along with demands
of $150,000 per song used in the training of Suno’s generative
Al software [16]. On July 9, a lawyer by the name of Shlomo
Fellig from the firm Latham & Watkins officially announced
that he would be handling this case for Suno, and on August
1, he filed an answer to this complaint [16]. At this time, this
is the most recent update in the case. It is presumed that Suno
and the major record labels are in their litigation stage, trying
to reach a settlement with these record labels. If this litigation
is not able to reach a settlement, then this case will proceed
to a jury trial. No date has currently been set for this trial at
this time.

B. Plaintiff Perspective

In the ongoing dispute between Suno and major record
labels, the plaintiffs argue that the Al startup relied on unli-
censed, copyrighted music to train its generative model. They
claim this constitutes willful infringement, depriving creators
of due compensation and control over their works. This section
outlines the evidence and legal rationale underpinning the
labels’ stance, shedding light on how they plan to prove unau-
thorized use of their music. As discussed in the background
information section, Al companies typically do not disclose
datasets, as they can be considered to be trade secrets [17]. In
this section, we will detail the type of evidence that is being
used against Suno and other musical generative Al companies.
The following points were taken from the response filed in the
District Court of Massachusetts and should be understood as
the opinion of a law firm:

1. In pre-litigation correspondence, it was stated that “Suno

also claimed that its large-scale copying of sound recordings

is “fair use,” which was telling because fair use only

arises as a defense to an otherwise unauthorized use of a

copyrighted work.” [3].

2. An early investor in Suno admitted that “if [Suno] had

deals with labels when this company got started, I probably
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wouldn’t have invested in it. I think that they needed to make
this product without the constraints” [18]. The constraints,
of course he is referring to are implied to be copyrighted
music.

3. Using targeted prompts, the plaintiffs were able to create
Al-generated songs that were almost identical in output to
that of their own works. The approach was to specify key
identifiers from the song such as the decade of release,
topic, genre, and description of artist. An example of this is
“Johnny B. Goode” by Chuck Berry (copyright owned by
UMG). Suno was given the prompt “1950s rock and roll,
rhythm & blues, 12 bar blues, rockabilly, energetic male
vocalist, singer guitarist” and fed the lyrics for “Johnny B.
Goode” [3]. The result was an output entitled “Deep down in
Louisiana close to New Orle,” with quite a few similarities
to the original, mainly in the rhythm of the melody and key.
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Fig. 2. Deep down in Louisiana close to New Orle (Suno generated tune) [3]
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Fig. 3. Johnny B. Goode (Chuck Berry) [3]

The plaintiff was able to create 29 total responses shar-

ing some kind of similarity (melodies in verses/choruses,
rhythms, structure, etc.) to “Johnny B. Goode” using the
same prompt.
4. Another common output that the plaintiff was able to
generate was the AI’s use of producer tags. Common in rap
music, “A producer tag is a short audio clip that typically
contains the producer’s name or a catchphrase, used to
identify their work and assert ownership over a track”
[19]. One instance of the use of producer tags is in an
output entitled ‘“Rains of Castamere”, which begins with
the producer tag of CashMoneyAP, who is most famous for
his recordings with artists Dababy and Pop Smoke.

To summarize, Suno did not disprove the claims of using
copyrighted music and instead invoked “fair use,” key investors
have implied that they knew the Al was trained on copyrighted
music, multiple songs have been recreated almost note for note
through specific prompts, and producer tags from copyrighted
artists are making their way into the generated songs.
As discussed in previous sections, 'fair use’ has been a
cornerstone of Suno’s defense, as a protective measure to allow
them to use copyright-protected music in Al training. The
plaintiff, however, believes that “fair use” cannot be invoked
in this circumstance. Here are their arguments why:
1. Suno is using copyrighted works for commercial gain.
As stated previously, uses of copyrighted material for com-
mercial gain, especially in the same market as the original,
is much less likely to be considered under fair use [7].
2. The fair use doctrine describes certain use cases that
can be considered fair, such as “criticism, comment, news
reporting, teaching . . . scholarship, or research” , however
Suno does not fall under any of the listed categories,
stating “Suno’s service does not offer “commentary” or
“scholarship” or promote human authorship” [3].
3. The use of Suno’s Al is non-transformative, and the
only use for this software is to generate competing music
for monetary gain, “directly proportional to the number of
music files it generates”. Citing the fair use doctrine “If an
original work and a secondary use share the same or highly
similar purposes, and the secondary use is of a commercial
nature, the first factor is likely to weigh against fair use,
absent some other justification for copying” [3].

C. Defendant Response

On June 24th, 2024, Hueston Hennigan LLP filed a com-
plaint against Suno, placing the company under intense legal
scrutiny. In response, Suno immediately engaged Latham &
Watkins, a leading law firm with a strong reputation in Al
and technology litigation, to spearhead its defense. This move
underscored Suno’s commitment to addressing the allegations
head-on while highlighting the case’s potential impact on
the Al music industry. Latham & Watkins quickly filed a
formal answer to the complaint, setting the stage for a high-
profile legal battle. The following points were taken from the
response from Latham & Watkins filed in the District Court
of Massachusetts, here are their main arguments against the
points made in the original complaint:

1. Suno is a tool used to make new music, designed for

originality, to see how people around the world can create

new songs. Suno, built from extensive analysis of all genres
and styles of music, intends to mimic these styles of music,
not directly copy any song. The act of generating a song in

a genre violates no copyright or intellectual property (IP)

laws, stating “IP rights can attach to a particular recorded

rendition of a song in one of those genres or styles” [20].

The act of generating a song in a genre violates no copyright

or intellectual property (IP) laws, stating “IP rights can

attach to a particular recorded rendition of a song in one

of those genres or styles” [20].
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2. The major record labels frame their concern as creating
copies of pre-existing music, but what record labels are
really after is to shut Suno down, effectively eliminating
competition from the market. “Where Suno sees musicians,
teachers, and everyday people using a new tool to create
original music, the labels see a threat to their market share.”
[20].
3. Suno has constructed multiple “guardrails”, specifically to
ensure that no Suno generated output related too closely to
a particular song used in the training process. This includes
but is not limited to using industry standard software to
ensure that user inputted audio clips are owned by the user,
and not commercial. The software they referenced is most
likely similar to Content ID or Shazam, audio fingerprinting
software used by Youtube and Apple Music respectively
[20].
4. “It is fair use under copyright law to make a copy
of a protected work as part of a back-end technological
process, invisible to the public, in the service of creating an
ultimately non-infringing new product.” [20]. This statement
is true; however each case is unique and must be weighed
against four main factors of fair use: purpose and character
of the use, nature of the copyrighted work, amount and
substantiality used, and effect on the market.
These arguments aim to establish Suno as a tool used to
make new music, which is not copyrightable under Fair Use
and copyright laws. They claim that Suno is being targeted
as “competition to the market” as these major record labels
have established a monopolistic hold on the music sphere. The
defendants ensure they have installed the proper protection to
ensure their outputs are unique and argue that the usage of
copyrighted music is protected under fair use laws as a part
of a back-end technological process.

D. Looking Forward

Ultimately, what this case boils down to is an application of
fair use and copyright law. Both sides have made arguments as
to why fair use applies or does not in this circumstance. Due
to the uniqueness of Al systems, courts will have to carefully
consider the behaviour of this software, to determine its impact
on the field. Copyright law protects creativity and ingenuity,
so there is a main question that courts have to answer: is
there a difference between an Al using a song from its dataset
as inspiration versus a musician taking inspiration from an
artist? The outcome of this case is set up to redefine the
intersection of Al innovation and copyright law, setting critical
legal precedents that will influence the entire generative music
landscape. As the courts continue to discuss the applications
of fair use in the context of Al training datasets, a ruling in
favor of either party could catalyze significant shifts in industry
practices. This will affect how data is sourced, utilized, and
disclosed. This case, therefore, not only impacts the music
sector but also offers an application for copyright law in
Al in multiple sectors. Looking to the future, companies
can mitigate legal risks and heighten ethical practices by
using more transparent data practices and fair compensation

frameworks. If more companies tried to implement ethical
practices, such as licensing agreements or non-copyrighted
datasets, we would see a trend of less and less cases and civil
suits.

V. PROPOSED SOLUTION

This section outlines our proposed solution, which is de-
signed to safeguard the rights of copyright holders while
facilitating innovation in generative music Al It is important to
note that the implementation of this solution is contingent upon
the assumption that legal precedent has not yet established
that the use of copyrighted works qualifies as fair use. Our
approach is built on two core components: a detection system
for identifying instances where copyrighted music is used dur-
ing Al training, and a compensation mechanism to ensure that
creators are fairly remunerated for such usage. The detection
component employs advanced watermarking and fingerprint-
ing techniques to accurately flag any unauthorized replication
of original works. Meanwhile, the compensation component
aims to establish a transparent, levy-based framework that
directly channels revenue to the rightful copyright holders.
By integrating these two components, our solution seeks to
strike a balance between fostering technological innovation
and upholding the integrity of intellectual property rights.

A. Detecting Copyrighted Music

1) Legal and Regulatory Compliance Rules: A solution
that aims to handle a large amount of secure data from top Al
companies and record labels can break laws and regulations,
leading to counter suits. This section aims to address the main
regulations before discussing how we plan to circumvent them.
IP laws, such as the Copyright Act of Canada [21] require
proof of ownership and unauthorized use to initiate legal
proceedings which makes this capability especially relevant
under such intellectual property laws. Eliminating the need to
share raw data between companies becomes a core principle
in our solution in order to comply with key IP laws. Proving
“similarity” between items in datasets does not consistently
hold up in a court of law as a substantial amount of proof
[22]. As such, an optimal solution could implement some
kind of test that does not rely solely on a similarity score,
but instead can tell with absolute certainty if an item in
the dataset is copyrighted. Our solution aims to establish a
legal framework capable of detecting and stopping copyright
infringement. These methods include:

1. Protecting personal data: Training data must stay within

local boundaries to meet privacy law requirements.

2. Verifying ownership: Organizations can establish un-

ambiguous Al model ownership proof through the use of

adversarial fingerprints and distinctive watermarks.

3. Tracing infringers: Legal accountability for unauthorized

Al-generated music distribution can be achieved through

tracking models with embedded identifiers.

4. Enhancing copyright enforcement: Ensure Al-generated

content compliance with intellectual property laws through
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auditable verification processes that produce legally admis-

sible evidence.

2) Introduction to Split Learning: We selected the split
learning paradigm because it best aligns with the requirements
of this compliance check. The neural network architecture
divides across different parties when using split (or vertical)
federated learning. The client stores the initial model com-
ponents and input data while the server holds the rest of the
model layers and produces the outputs. The cut layer in split
learning exchanges intermediate activations (“smashed data’)
between parties while raw inputs and complete model parame-
ters remain undisclosed. This setup matches our scenario: The
record label (client) feeds its music data into the initial layers
of a compliance-check model while the Al company (server)
processes this data using its own model weights to complete
the forward pass. Sensitive information remains confidential
because the record label cannot access the company’s model
details while the company cannot access the label’s raw audio.
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Fig. 4. Illustration of the split learning configuration [23]

For instance, in this setting, each client trains a partial

model up to a specific layer called the ‘cut layer’. Only
the intermediate features at the cut layer (boundary between
yellow and green) are sent to the server, and gradients at that
cut layer are returned to the client for training. This allows
joint model processing without sharing raw data.
Structure: For compliance checking, we configure a two-part
neural network: The record label runs a feature extractor on
its audio data locally, up to a cut-layer. The extractor could be
a lightweight CNN or audio encoder that transforms the song
into an intermediate feature representation. The Al company
attaches a corresponding detector head (the remaining layers)
that takes the intermediate feature and produces a compliance
result (for example, a likelihood score or an “infringement”
prediction). During an infringement check, the process works
as follows:

* The record label’s system takes one of its songs (or a

unique fingerprint derived from it) as input and forward-

propagates through the local cutlayer of the network. This
yields an encoded representation of the song. Crucially, this
encoding is abstract — it does not reveal the raw audio, but

it captures patterns the later layers can analyze [23].

* The “smashed” features at the cut layer are securely trans-

mitted to the Al company’s server. The Al company then

forward-propagates that activation through the rest of the
model (or a special compliance-check subnetwork) using its
private model parameters. For example, the Al company’s
model (or detector head) might compute a similarity or
likelihood that the input audio was part of its training data.
* The final output (which might be an encrypted or blinded
result — see privacy measures below) is sent back to the
record label. This output could be, for instance, a probability
or an error metric indicating how closely the AI model’s
knowledge matches the input song. If the value is above a
certain threshold, it suggests the model was likely trained
on that song (possible copyright infringement), if not, it
suggests no memorization of that content.
The split learning method enables every participant to access
only the information they need. The record label reveals only
derived features from its music files while the Al company
keeps its model weights private and does not get the raw
input. Split learning offers enhanced model privacy protection
compared to horizontal FL because each party has access
to only parts of the model which prevents full visibility of
the entire model to any single entity [24]. It is ideal when
parties hold different modalities of data (here, one had a
model or model updates, while the other has data to test),
effectively creating a form of federated inference on combined
inputs. Through split federated learning record labels and
Al companies engage in a compliance check workflow that
mirrors model training/inference activities while preventing
data pooling. Using a shared split model the organizations
process data collaboratively to identify copyright overlaps
while maintaining local storage of proprietary information.
3) Privacy-Preserving Techniques for Secure Compliance:
Ensuring privacy is paramount: The music owned by record
labels and the parameters of the Al company’s model must
remain hidden throughout the federated compliance check. Our
system employs multiple cryptographic and privacy methods
to protect the federated process:
Secure Multi-Party Computation (SMPC): SMPC enables
multiple participants to perform joint computations over their
input data while keeping those inputs hidden from each other
[25]. Our design uses SMPC protocols to enable collaborative
analysis between the AI model and the record label’s data.
For example, the record label and Al company can employ
an SMPC framework (like Facebook’s CrypTen or Microsoft
SEAL) to evaluate the AI’s model on the label’s song in
a secret-shared manner. The model’s computations (matrix
multiplications, etc.) are performed on encrypted or secret-
shared values, so the Al company never sees the actual audio
features and the record label never sees the raw model outputs.
This could be implemented with an additive secret sharing
scheme: the record label secret-shares the intermediate features
with the Al company (or a neutral server), and the Al company
secret-shares its model parameters. They then perform the
forward-pass computation by exchanging masked values. At
the end of the computation, only the final result (e.g., a risk
score) is revealed (and only to the party authorized to see it).
SMPC essentially functions like a virtual trusted calculator:
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for instance, it can let the Al company privately evaluate its
model on the record label’s data [25], or allow multiple labels
to perform a joint aggregate audit without sharing individual
data. The process ensures that proprietary data and models
stay secure and undisclosed throughout the compliance check.
Homomorphic Encryption (HE): Homomorphic encryption
[26] enable users can perform calculations on encrypted data
to receive encrypted results that decryption is possible only
via owner of the secret key. HE can be used in selected areas
of the compliance pipeline to improve data protection. For
example, a record label can encrypt an audio feature vector
with their public key and send it to the Al company. The Al
company then runs its model on the encrypted data without
ever decrypting it, using partially homomorphic operations
(addition, multiplication on ciphertexts). The outcome is an
encrypted infringement indicator, which only the record label
can decrypt to see the result. Throughout this process, the Al
company learns nothing about the input or the output, since
all intermediate data remains encrypted. Fully Homomorphic
Encryption (FHE) schemes (which allow arbitrary computa-
tions on ciphertexts) can be heavy for deep learning, hence we
use optimizations like leveled HE or Partially Homomorphic
Encryption (PHE) for specific operations to keep overhead
reasonable [27]. For instance, computing a simple dot-product
similarity or a reconstruction error between the model’s output
and a target song can be done under HE if we linearize
the operation. Non-linear operations (like activations) can be
handled either by the split learning approach (so that they
occur on the AI’s side in plaintext on already encrypted inputs)
or by efficient garbled circuits if needed. By carefully choosing
which parts of the computation to encrypt, we ensure a balance
between privacy and performance. The cryptographic strength
of HE means even if communications are intercepted, the
content (songs or model responses) remains unintelligible
without the decryption key.

Differential Privacy (DP): We incorporate differential privacy
to protect against information leakage in any shared outputs
or updates. DP works by adding carefully calibrated random
noise to results so that the presence or absence of any single
data record is indistinguishable. In our context, the Al music
company could train its model with DP-SGD (differentially
private stochastic gradient descent), which would ensure the
model does not memorize specific training examples (like
a particular song) too exactly. This pre-emptively protects
against infringement, because a DP-trained model is unlikely
to regurgitate any one song verbatim. Even during the feder-
ated compliance check, DP can be applied. For example, if
multiple record labels participate in a joint audit, the aggre-
gated compliance metrics can have noise added before being
revealed, so that no single label learns specifics about another
label’s queries. The record label’s query results themselves
could be noised if we only need a yes/no answer with high
confidence. Importantly, the noise levels are set such that they
do not obscure true infringements but hide minute details of
the model’s behavior. DP ensures that any one song (even
if it were in training) has a limited influence on the output,

preventing the exposure of exact memorized content. This
technique is computationally cheap (just noise addition) and
scales well, complementing heavier cryptographic methods by
reducing how much sensitive information even exists in the
computed results.

Zero Knowledge Proofs (ZKP): Zero-knowledge proofs al-
low a party to prove a statement about data or computations
without revealing the data itself [28]. We utilize ZKPs to
make the compliance process verifiable and legally defensible.
For instance, after training, the Al company can generate
a zeroknowledge proof of training that attests ‘“This model
was trained only on licensed data and did not include Record
Label X’s songs” without revealing anything about the training
data or model parameters. Recent advances in ZKPs for ML
(zkML) enable proving properties of models, such as training
steps or dataset membership, in a computationally feasible way
[29]. Concretely, the Al company could commit to the dataset
it used (e.g., via a cryptographic hash or Merkle root of all
training data) and then provide a ZK-SNARK proof that none
of the record label’s song hashes are in the committed dataset.
This is akin to a zero-knowledge set membership test — proving
a set intersection is empty without revealing the actual sets.
Alternatively, the Al company can prove that it followed a
prescribed training procedure (for example, a training run with
differential privacy enabled, or only using a specific approved
dataset) [29]. The record label (or a regulator) can verify this
proof and be mathematically assured of compliance. Another
use of ZKP in our system is for the infringement test itself.
If the record label gets a negative result (no infringement
detected), the AI company could output a ZKP that the test was
carried out honestly on the model in question (preventing an
Al company from swapping in a different “clean” model just
for the test). Although generating ZK proofs for deep learning
computations can be resource-intensive, we confine their use
to periodic checks or final audits to keep it tractable. The
outcome is that compliance checks are trustless — the record
label doesn’t have to trust the Al company’s word, they have
cryptographic proof of either compliance or violation, which
is crucial for legal defensibility. By combining these measures
— SMPC/secure computation for processing data, HE for data
encryption in transit and compute, DP for output privacy, and
ZKP for process verification — we create a robust privacy-
preserving compliance system. Each technique is chosen to
minimize performance hits. For example, we use partial HE
and secret-sharing (which are faster than full FHE), we add
only small noise for DP, and we generate ZK proofs for high-
level properties rather than every single operation. The overall
design ensures that at no point is sensitive information exposed
in plain form, yet all parties can collaboratively achieve the
goal of detecting unlicensed training. When the model training
is complete, the Al company can package a compliance report:
this might include the ZK proofs of training, differential
privacy parameters used, and summary of any internal compli-
ance tests. The record labels, through the federated system, get
the ability to verify this report and test the model themselves,
yielding high assurance that if the model passes, it truly did
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not use unlicensed music. To avoid high financial cost for
any single entity, the federated compliance system can be
managed by a neutral third-party service or consortium of
stakeholders. This service can maintain the secure aggregation
server and coordinate cryptographic key management. Using
cloud computing with hardware acceleration (like FPGAs for
HE, or SGX secure enclaves as a backup option) can speed
up cryptographic operations, reducing runtime and therefore
cost. Also, many cryptographic libraries are open-source and
optimized, meaning the main expense is computing time. With
model compression and batching, we ensure that even large
models can be handled with commodity hardware given some
time (hours, not days, for a thorough audit of a big model
against millions of song samples, for instance). The design
favors one-time heavy computations (like proof generation or
full-catalog scan) only when absolutely necessary (e.g., a legal
dispute), whereas routine compliance checks can be much
lighter (sampling a subset of songs, using partial evaluations,
etc., to get a quick assurance).

4) Workflow: Step 0: Initial Setup and Key Exchange — All
participating entities (the Al company and one or more record
labels, or an auditor) set up the cryptographic environment.
This involves generating encryption keys (public/private key
pairs for HE for each label, key shares for SMPC, etc.) and
exchanging any public parameters. They also agree on the
model split architecture and the protocol (which cut layer, what
format features will be, what threshold constitutes a violation,
etc.). For example, the Al company publishes the architecture
of the compliance model or the fingerprinting method it will
use. A central coordination server (could be run by a neutral
party or consortium) may exist to facilitate scheduling and key
management, but it will not see any raw data or models.
Step 1: Registration of Data Commitments — The Al company
commits to its training dataset and model. It computes a
commitment hash (or Merkle root) of all training data it
used. This is submitted to a smart contract or to the record
labels in a ledger so that it’s fixed (the company can’t later
change it). Likewise, each record label prepares a fingerprint
database of their copyrighted songs — e.g., a set of audio
hashes or embeddings — and commits to those (so that they
can’t maliciously add more songs later just to trap the Al
company). These commitments will be used in ZK proofs later.
This stage ensures both sides “lock in” the items of interest
without revealing them.

Step 2: Local Model Training (Al Company) — The Al
company trains its Al music model on its own data (e.g.,
publicly licensed music, user-generated music, etc.). This is
done using its standard pipeline, possibly with differential
privacy and logging as described. No external interaction is
needed during core training, so no overhead is incurred here
aside from any self-chosen privacy technique. Once the model
is trained (or at certain checkpoints), it is saved for audit. Let’s
assume the model is now ready to be checked for compliance.
Step 3: The coordinator server notifies the Al company
and relevant record label(s) that a check will happen. They
establish a secure session. The Al company provides the

server-side model for the split learning inference — typically,
this means loading the second part of the model on a secure
computation server. If using SMPC, the Al company secret-
shares or encrypts its model weights with the computation
service (or among multiple servers). If using a TEE (Trusted
Execution Environment) as an aid, the model could be loaded
into an enclave. In any case, the Al company does not give the
model in plaintext to the label, it only makes it available in the
secure protocol. The record label in turn prepares its input data
for the check. For instance, it selects a batch of 100 songs (or
segments) that it strongly cares about. The label either keeps
these on its local machine (for split learning) or encrypts them
with homomorphic encryption (if the model will process them
directly in encrypted form). All parties confirm readiness.
Step 4: Federated Inference/Processing — The record label’s
client-side application now goes through the selected songs
one by one (or in batches). For each song, it does the
following:
* Compute the feature representation (e.g., passes it through
the local cutlayer of the model or simply prepares the raw
input if using HE directly).
e Send the intermediate activation to the Al company’s
model server over an encrypted channel (TLS + the values
might already be secret shares or encrypted numbers). If
using pure HE, send the encrypted audio/features to the
server.
* The AI company’s server (or the joint MPC nodes) then
perform the forward pass on the encrypted/secret shared
data through the remaining network layers. For example, it
computes the output logits or reconstruction of the input.
Since the model is large, this computation is optimized as
discussed (maybe using GPU, etc.).
* The server returns the encrypted result of the inference
back to the record label. This might be the log-likelihood
of the sequence, a set of output audio tokens, or a high-level
“yes/no” flag in secret-shared form.
Step 5: Compliance Metric Computation — The record label
now decrypts or reconstructs the results from Step 4. If the
result was an encrypted likelihood score, the label decrypts
it with its HE secret key. If it was done via MPC, the label
combines its share of the result with the shares from the server
to obtain the final number. Now the label has, for each song
tested, a metric indicating how strongly the model reacted.
The label compares these metrics to the expected range for
non-members. For instance, if a certain song has a model
likelihood far above a threshold (meaning the model highly
likely has seen it [30], the system flags this song as a potential
infringement. In practice, the label might set a threshold based
on a statistical confidence (e.g., “if probability that the item
is in the data set is greater than 0.9, flag it”). They could
also use an internal classifier on the outputs — for example,
if the output was the model trying to continue the song, the
label can measure similarity between the continuation and the
original. Some systems might automate this: e.g., compute a
cosine similarity between audio embeddings of the original
and the generated continuation. High similarity would yield
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a flag. These calculations are done on the label’s side, so no
privacy issue arises. The outcome of this step is a compliance
report: perhaps a table of songs vs. scores, highlighting any
that exceed the infringement threshold.
Step 6: Result Sharing and Proof Generation — Now the record
label has preliminary results. If all songs are in the clear (no
suspicious scores), the Al model likely did not use any of
the label’s data. The record label can then cryptographically
sign an attestation that “We, Label X, have tested Model Y
on [date] and found no evidence of training on Label X’s
catalog.” This attestation can be shared with the AI company
as part of a compliance certificate. On the other hand, if any
song was flagged, the system can escalate. The record label
can notify the Al company (most likely through the protocol,
without revealing which song in plaintext, at least initially).
They might say “Song ID #5 from our hashed list appears
to have been used in training. We request an explanation or
remediation.” At this stage, the Al company has the option to
contest or accept. If contesting, this is where zero-knowledge
proofs or additional verification come in. The AI company
might invoke the previously computed commitment of its
training set and perform a private set intersection (PSI) with
the label’s song in question. PSI can definitively show if that
song (or its fingerprint) was in the training set, without the Al
co learning which song it is (if done properly). If PSI comes
out positive, it’s proof of infringement. If PSI is negative but
the model’s behavior was still highly suspect, it could indicate
the model learned something very close to the song (e.g.,
an overfitted surrogate). In either case, the parties now have
cryptographic evidence. Optionally, they can involve a neutral
auditor who reviews the evidence (the auditor could be given
access to the song under NDA and maybe run a targeted test
themselves for confirmation).
* The Al company can produce a ZK-proof that the model
tested was indeed the one corresponding to the committed
training hash. This prevents a scenario where the company
trained a second “decoy” model without the label’s songs
just to pass the test. The proof would show that the weights
of the deployed model are a result of training on the
committed dataset (or at least that they match a certain hash
that was committed). Such a proof might use zk-SNARKS
as described in the proof-of-training concept [29].
* If the result is clean, the Al company might also produce a
ZK-proof that none of the label’s songs (from a committed
list) appear in its training set. This could use a zk-proof
of set disjointness, which might be heavy, but perhaps they
only do it for a small set of top songs.
Step 7: Compliance Outcome — After analysis, one of two
outcomes occurs. No Infringement Detected: All checks pass.
Or, one or more labels detected their content in the model.
In this case, the system can automatically provide evidence to
the Al company and a regulator.
Step 8: Ongoing Monitoring — The federated system remains
available for future checks.Throughout this process, all actions
(from key exchange to final verification) are designed to
be auditable and repeatable. Each cryptographic message or

proof can be logged (in encrypted form) to provide a trace
in case of disputes. The combination of federated learn-
ing structure and advanced privacy techniques ensures that
compliance verification is done scientifically and rigorously,
minimizing trust and subjectivity. The result is a feasible,
efficient, and privacy-preserving federated system that upholds
copyright law without stifling the development of Al models.
By balancing the load between parties and using cutting-edge
cryptography, the solution scales to real-world industry usage
— enabling record labels to defend their intellectual property
and AI companies to innovate with accountability.

B. Compensation Model

One of the most pressing issues in Al-generated music is
how to fairly compensate artists and record labels for the use of
their works in training models. As Al technology’s popularity
skyrockets, debates over licensing and copyright have grown.
This section explores the complexities of crafting effective
compensation frameworks that balance innovation with fair
treatment of creators. First, we introduce two methods we
considered using as our compensation model. We then outline
our full model, along with an example of our system using a
mock dataset.

1) Royalty-Based System: The first method we considered
was a royalty-based system. Music streaming services utilize
royalty-based systems in their compensation methods. It works
by giving artists money based off the number of streams
or plays, usually a fraction of a cent per stream. So how
can we implement this system? Well, similar to streaming
services, when models are trained, they must “play” a song
in order to for the model to learn the properties of the song
and genre such as rhythms, melodies and chords. Models
usually require multiple full passing of training data through
the model (known as epochs). In an epoch, some data can
be passed through more than others, known as oversampling
and undersampling. For example, if you are training a musical
Al to create songs from multiple genres but your dataset has
much more rock music than it does classical, your epoch can
reuse some classical songs and leave some rock songs out of
the training to represent the two genres equally. The royalty
system aims to compensate artists for each play that their song
has in the training process, acting similarly to how streaming
services such as Spotify work. The cons of implementing this
method is the information needed to implement this solution.
Being able to see the source code and determine exactly how
a model was trained is the only way to implement a royalty-
based system. Many Al companies would consider this to be
proprietary knowledge, and as such would not be open to
disclosing this information. The main pros of a royalty-based
system are that artists are compensated by plays, which means
that if a song was used more in the training of the system, they
are entitled to a bigger cut. If a song is used more in training,
then it is more likely for the output of the generative Al to
share key properties with that song.

2) Levy-Based System: A levy is defined as “(of a govern-
ment or organization) to demand an amount of money, such
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as a tax, from a person or organization” [31]. In a levy-based
system, Al companies would be demanded to give an amount
of money, which would then be pooled out amongst the artists
in the dataset. This requires knowing which artists are in the
dataset and also knowing how many of each of their songs are
represented. Once this is done, we can divide the number of
songs each artist has in the dataset by the total amount in the
fund to evenly distribute the amount that each artist gets from
this levy fund. The cons of implementing this method are that
the data is not as fairly represented, as we have discussed with
the oversampling and undersampling case above, thus some
artists may get more than they actually deserve. The pros of
this method are that it is easier to retrieve the data such as the
number of songs that each artist has in a data set over trying
to determine the specific training process.

3) Compensation Framework: Our compensation frame-
work first operates by receiving the data from our FL frame-
work, telling us which songs are above the threshold of
probability, and therefore, are very likely to be in the dataset.
Using this data, we can then generate a list of how many songs
each creator has in the dataset. Due to our FL framework,
we have decided that a levy-based system better fits the
compensation model, but we still need to decide how to
generate our levy (i.e. how much money each company will
be paying to copyright holders).

ProRata. Al an artificial intelligence start-up, has established
a revenue-sharing model designed to fairly compensate content
creators for their work when used by Al systems. The com-
pany, unlike other traditional AI models which tend to scrape
online content without compensation publishers, has claimed
to share half the revenue from subscriptions to its platform
with its licensing partners. This already includes Universal
Music, Axel Springer, Financial Times, The Atlantic, and
Fortune. The main goal of the company is to license the
technology behind its search engine to other generative Al
companies. If an Al company were to adapt this business
model, all of their lawsuits would come to an end, states
ProRata CEO Bill Gross; “If you adopt this business model,
this will end your lawsuits, because now you’ll be sharing
revenue properly” [32].

ProRata generates revenue mostly through an Al-powered
ad platform that places relevant ads within Al search results
and digital content. They also have revenue streams from
their proprietary attribution technology which can be licensed
to other Al companies as a service, monitoring services
that track content usage by Als, and potentially subscription
options through their Gist.ai search engine that showcases their
attribution tech, although this technology is still in its Beta-
testing stage.

ProRata.Al is currently valued at over $130 million, and
off the backs of a successful and ethical business model, we
plan to adapt this to music Al companies. Taking Suno as an
example, their current business model works almost entirely
off subscriptions. Suno has three different subscription tiers,
each with different features and pricing.

* Free Plan: 50 credits/day (equivalent to 10 songs), Suno

retains copyright.

e Pro Plan: $8/month, 2,500 credits/month (500 songs),

users hold the right to their creations.

¢ Premier Plan: $24/month, 10,000 credits/month (2,000

songs), users retain full rights [33].

Suno has not released their revenue model to the public.
However, we know that in 2023, Suno partnered with Mi-
crosoft Copilot to introduce Al music generation in the Copilot
software. This partnership does not include any financial
agreement, rather a win-win situation that brings more users to
Suno, while adding additional features to Microsoft Copilots
Al software [33]. As such, we currently estimate that Suno’s
revenue come 100% from subscription fees. As such, half of all
Suno’s revenue would be sent to the levy to then be distributed
to artists. To show our compensation framework in action, we
have generated a “mock company” to demonstrate. By taking
some of the top musical generative Al companies and mod-
elling them based on their revenue, we can show what a major
Al company would have to pay in our framework. Suno has not
released their revenue model to the public, but we know that
in 2023, Suno partnered with Microsoft Copilot to introduce
Al music generation in the Copilot software, however this
partnership does not include any financial agreement, rather a
win-win situation that brings more users to Suno, while adding
additional features to Microsoft Copilots Al software [33]. As
such, we currently estimate that Suno’s revenue come 100%
from subscription fees. As such, half of all Suno’s revenue
would be sent to the levy to then be distributed to artists.
To show our compensation framework in action, we have
generated a “mock company” to demonstrate. By taking some
of the top musical generative Al companies and modelling
them based on their revenue, we can show what a major Al
company would have to pay in our framework.

Company Revenue ($USD)
Aiva Technologies $1.5M
Beatoven.ai $37.8k
Amper Music $5.1M
Boomy $5.8M
Suno $8M
Music.Al $22.1M

TABLE T
COMPANY REVENUES [34], [35], [36], [37], [38], [39]

The average revenue of $13.26 million USD across major
Al music companies (Aiva Technologies, Beatoven.ai, Amper
Music, Boomy, Suno, and Music.Al) provides a useful base-
line for projecting potential artist compensation frameworks.
If these companies were to adopt a ProRata.ai-style revenue-
sharing model, allocating 50% of subscription revenue to
rights holders, and assuming an 100% subscription-based
revenue structure approximately $6.63 million would be dis-
tributed to artists and copyright holders annually per company.
We have generated a mock dataset, comprised of just under
5,000 songs that a generative music Al company could use to
train their system [40]. This dataset represents a multitude of
genres, artists, and time periods so a user could realistically
generate a song from almost every genre and style. Our goal

162



in this model was to showcase how a levy-based system could
work based upon knowing the number of songs that each
artist has in a given training set. Based upon this model, we
will show you some of the top performers from this dataset,
and how much they are owed based upon our compensation
formula.

Track Artist Unique Count Compensation
Bad Bunny 30 $8,816.10
Ren Avel 26 $7,640.62
Asake 21 $6,171.27
Bnxn 19 $5,583.53
Seyi Vibez 18 $5,289.66
LoFi Waiter 18 $5,289.66
Wizkid 16 $4,701.92
Linkin Park 14 $4,114.18
Hozier 13 $3,820.31
Sabrina Carpenter 11 $3,232.57
Burna Boy 11 $3,232.57
Zinoleesky 11 $3,232.57
Billie Eilish 10 $2,938.70
Red Hot Chili Peppers 10 $2,938.70
Central Cee 10 $2,938.70
Yume.Play 10 $2,938.70
Green Day 9 $2,644.83
Celine Dion 9 $2,644.83
Metallica 8 $2,350.96
Gunna 8 $2,350.96
Lil Baby 8 $2,350.96
Brent Fiyaz 8 $2,350.96
Bruno Mars 8 $2,350.96
J Balvin 8 $2,350.96
Paramore 8 $2,350.96
My Chemical Romance 8 $2,350.96
Zhao Ying 8 $2,350.96
Hao Yu 8 $2,350.96
TABLE IT

ToP ARTISTS COMPENSATION

Based on our calculations, each song in the dataset is
entitled to $1,372.10. Pictured above, we can see artists of
many genres (latin, rap, pop, metal, rock, etc.) that have all
made a significant impact on the dataset. Once these values are
generated, Al companies are made aware of these values and
will distribute the money to the necessary labels and copyright
holders. We believe this method to be best implemented as
a third party software to best ensure the protection of both
parties’ data. Record labels would enlist the help of the
third party, who would then be responsible for compiling all
required data, and only sending vital information when needed.
The information received by the both companies (record label
and Al company) during this process would be the number of
songs by each artist that (our system believes) appears in the
dataset, along with the breakdown of how much each artist
receives, in a format similar to Table II. We designed our
compensation framework to create the best possible outcome, a
win-win scenario for both companies that avoids legal fees and
time spent dealing with legal issues. Currently, the case against
Suno is worth $150,000 per song, and totals to over $350
million. If suno were to implement our framework, this number
goes down to $22.5 million and saves valuable company time
and resources by not having to fight a litigious lawsuit. At
the same time, record labels are also avoiding legal fees and

court time, while receiving a steady, annual payout from Al
companies. This means that record labels are actually given
incentive to help Al companies grow, and thus could lead to
a less competitive music culture.

VI. THE FUTURE OF MUSIC & Al

As the future of copyright law and music Al is still
unsure, we can discuss two possible futures. One in which
all materials are indeed fair use, and another does not believe
these materials are fair use. If precedent is set in the copyright
Al world that all copyrighted materials are indeed fair use,
then this solution will no longer be viable to implement, as
Al companies will not have to compensate copyright holders.
Since the future of copyright law and Al remains unsure in
the public eye, we set out to address all possible outcomes
of these important cases. Our solution introduces ethical
business practices by integrating advanced watermarking and
fingerprinting techniques into Al training processes, ensur-
ing that artists receive fair compensation while safeguarding
intellectual property rights. This approach not only fosters
transparency in data usage but also creates a win-win scenario
for both Al developers and creators. Experts predict that future
copyright law will evolve to address the unique challenges
posed by Al, potentially leading to new legal precedents that
better recognize the transformative nature of Al-generated
music [41]. As ethical practices gain traction, we anticipate a
shift toward revenue-sharing models that empower artists and
encourage responsible innovation. Ultimately, this balanced
framework sets the stage for a sustainable music ecosystem
where technology and creativity coexist harmoniously.
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Abstract—Deep learning applications such as real-time object
detection in autonomous vehicles, interactive voice assistants, and
high-frequency trading systems often require strict adherence
to inference latency constraints defined by service-level objec-
tives. Ensuring that neural network inference times meet these
constraints before deployment presents a significant challenge
to developers. In this paper, we introduce a transformer-based
approach to predict neural network inference latency in pre-
deployment stages. Our method utilizes a diverse synthetic
dataset of feedforward neural networks, characterized at the
operation level. These networks are represented as graphs, where
the node attributes encode the type of operation and weight count,
and the edges define the topology of the network. By treating
each node as a token, the transformer leverages multi-head
attention to capture structural and attribute relationships that
strongly correlate with inference latency. Experimental results
demonstrate that the proposed transformer model achieves much
better performance when compared to baseline linear regression
in predicting standard neural network inference latency across a
wide variety of architectures and configurations. Ultimately, our
transformer-based solution facilitates the development of latency-
sensitive deep learning systems by enabling more reliable and
efficient architectural optimization prior to deployment.

I. INTRODUCTION

Inference latency refers to the time delay between providing
an input to a model and receiving the corresponding output.
In deep learning, this metric is crucial for applications that
require real-time or near-real-time responses [1]. Thus, deploy-
ing deep learning models in production environments requires
careful consideration of inference latency constraints. Modern
deep learning models often comprise millions or even billions
of parameters [2], leading to challenges in inference latency
and resource utilization. The complexity of these models
poses significant interpretive challenges and can impact the
efficiency of deployment [3].

A. Motivation

Previous work by Mendoza & Wang demonstrated the
effectiveness of using graph embeddings and deep neural
networks for latency prediction [4]. However, there remains
room for improvement, particularly with the application of
Transformer models.

The hierarchical and sequential nature of neural network
architectures means that data is processed through multiple
layers, each extracting increasingly abstract features from
the input. This layered structure allows neural networks to
learn complex representations, with each layer building upon

the outputs of the preceding ones [5]. Given this structure,
Transformer models, known for their attention mechanisms,
are particularly well suited for tasks involving hierarchical
and sequential data [6]. Transformers can capture long-range
dependencies and intricate relationships within data sequences
[6], making them effective in modeling complex interactions
between different layers and operations in neural networks.
This capability suggests that Transformers could be advan-
tageous in predicting neural network inference latency by
effectively understanding and representing the hierarchical
architecture of neural networks.

B. Related Works

1) Inference Latency Prediction: The prediction of neural
network inference latency is an important area of exploration
as deep learning models become increasingly complex, with
various methodologies proposed to enhance accuracy and effi-
ciency. Mendoza and Wang’s work introduced the use of graph
representations, utilizing attribute node lists and adjacency
matrices at the operator level to predict individual inference
latency [4].

Building upon this foundation, Liu et al. developed NNLQP,
a multi-platform neural network latency query and prediction
system [7]. NNLQP integrates an evolving database to store
latency data across diverse hardware platforms, facilitating
efficient retrieval and prediction. By leveraging a unified
graph embedding, NNLQP addresses challenges associated
with hardware graph fusion and kernel launch costs, thereby
improving prediction accuracy.

In the realm of hardware-aware neural architecture search,
Beglaryan and Ringhofer proposed a deep learning estimator
model designed to predict the inference latency of fully
connected deep neural networks on laptop CPUs [1]. Their
work underscores the importance of tailored latency prediction
models for specific hardware configurations.

Collectively, these studies underscore the importance of
accurate latency prediction in optimizing neural network per-
formance across various deployment environments. However,
there remains an opportunity for further work by incorporating
advanced architectures, such as transformers, to capture the
intricate relationships within neural network structures more
effectively.

2) Transformers for Performance Prediction: Transformer
models have been used for structured prediction tasks across
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various domains [8], largely due to their ability to model com-
plex dependencies within sequences via self-attention mecha-
nisms [6]. These mechanisms allow Transformers to capture
intricate, multi-layered relationships in data, making them
suitable for modeling latency in neural network architectures.

Recent work by Kippel et al. highlights the interpretability
of attention scores, which shed light on how elements within a
sequence relate to one another through self-attention [9]. This
interpretability is particularly valuable when applied to latency
prediction, as it provides insights into dependencies within
neural network layers that traditional deep learning models
might miss.

C. Problem Definition

Our work implements a novel Transformer-based archi-
tecture for predicting neural network inference latency that
takes graph representations of a neural network as input and
outputs a continuous value representing the predicted inference
latency. By treating each layer or operation as a token, our
model leverages multi-head attention to capture the structural
and attribute relationships that correlate with inference latency.
This approach provides a practical tool for developers to
optimize neural network deployment without extensive testing,
facilitating the development of latency-sensitive deep learning
systems.

II. METHODOLOGY

In this section, we layout the data and model architecture
used for training the transformer model.

A. Data

The dataset used to train the transformer model consists
of 270,000 synthetically generated feedforward neural net-
works (FNNs), represented as graphs. In this representation,
nodes correspond to operations within the network, such as
input layers, hidden layers, and output layers, while edges
signify the connections between these operations. Each node
is annotated with attributes that detail the type of operation
and the number of associated weights, encapsulating both the
structural and computational characteristics of the network.
This graph-based representation captures the intricacies of
the architecture, providing a rich foundation for predictive
modeling.

The dataset is generated through a systematic process to
ensure diversity and complexity. Neural network architectures
are sampled with depths ranging from three to ten layers. The
number of units in each hidden layer is randomly assigned
from a range of powers of two, spanning from 1 to 16,384
units. This approach allows for the creation of networks with
varying computational demands, capturing both shallow and
deep architectures. Once the architecture is defined, it is
represented as a graph with an adjacency matrix to map the
topological structure and a node attribute matrix to encode the
operation type and weight count for each layer.

To capture the computational characteristics of the net-
works, inference latency is measured for each architecture.

Each network is instantiated and profiled on a standardized
hardware platform (M2 Macbook Pro w/ 16GB RAM), where
its latency is determined through a series of forward passes
with randomly generated input data. The median latency across
5 runs is recorded to ensure consistency and robustness against
measurement variability. This process results in a dataset
containing graph representations of architectures paired with
their corresponding latency values.

B. Model Architecture

The transformer model for inference latency prediction
processes neural network architectures represented as graphs.
In these graphs, nodes correspond to layers in the network,
annotated with attributes that include the operation type and
the number of weights. Edges capture the connections between
these layers. The model predicts a single scalar value repre-
senting the network’s inference latency based on this graph
representation.

The input to the model consists of two tensors. The
first tensor encodes the node attributes and has a shape of

(batch size, maximum depth of the network, attribute dimension).

The maximum depth of the network is set to 10, representing
the largest number of layers expected in the dataset. This
value ensures the model can handle most architectures without
exceeding memory constraints. The attribute dimension is
set to 3, which corresponds to the three features encoded
for each node: the type of operation (e.g., input, dense),
the number of weights, and any additional characteristics
relevant to inference. The second tensor is a binary mask
with a shape of (batch size, maximum depth of the network),
which indicates valid nodes with “True‘ and padded nodes
with ‘False‘. The mask ensures that padded nodes do not
contribute to the predictions.

The model begins by projecting the node attributes into a
higher-dimensional embedding space using a fully connected
dense layer. This transforms the input tensor to a shape
of (batch size, maximum depth of the network, 64), where 64
is the embedding dimension. This value balances the need
for rich feature representation and computational efficiency.
Learnable positional embeddings are then added to the node
embeddings to encode the sequential nature of the layers and
distinguish nodes based on their positions within the network.

The core of the model is composed of two stacked Trans-
former encoder blocks. Each block uses a multi-head attention
mechanism with four attention heads, which capture intricate
dependencies between layers. The feedforward network within
each block has a hidden size of 128, chosen to provide
sufficient capacity for processing complex relationships while
avoiding overfitting. Dropout is applied with a rate of 0.1 after
the attention and feedforward layers to prevent overfitting,
and layer normalization is included before and after each
component to stabilize training.

Once the node embeddings have been processed by the
Transformer blocks, the mask is applied to zero out contribu-
tions from padded nodes. The embeddings of valid nodes are
pooled using a weighted mean, where the embeddings are first
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multiplied by the binary mask, summed across the sequence
dimension, and then divided by the number of valid nodes.
This pooling mechanism aggregates information from all valid
nodes while ensuring that padded regions do not influence the
output.

The final dense layer produces a single scalar value for each
graph, representing the predicted latency. The model is trained
using mean squared error (MSE) as the loss function, which is
suitable for regression tasks, and mean absolute error (MAE) is
used as an additional evaluation metric to provide an intuitive
measure of prediction accuracy.

The training procedure uses a batch size of 64 to strike a
balance between computational efficiency and gradient stabil-
ity. Training is conducted over 100 epochs, allowing the model
sufficient time to converge without overfitting. The dataset is
split into 80% for training, 10% for validation, and 10% for
testing. The Adam optimizer is employed with a learning rate
of 0.001 to ensure efficient convergence.

The architecture of the transformer model is well-aligned
with the task of latency prediction. The use of multi-head
attention allows the model to capture both local and global
dependencies within the network architecture. Positional em-
beddings enable the model to encode the sequential nature of
the layers, while the pooling mechanism effectively handles
variable-length graphs by focusing on valid nodes. These
design choices, combined with the chosen hyperparameters,
make the model highly effective for predicting inference
latency across a diverse range of neural network architectures.
The values for the hyperparameters were chosen to balance
representational capacity, computational efficiency, and the
scale of the dataset. This alignment ensures the model is not
only effective but also practical for real-world use cases.

ITII. RESULTS

The transformer model achieved a test mean absolute
error (MAE) of 0.0038 seconds. This represents a substantial
improvement over the baseline linear regression model intro-
duced in the work of Mendoza and Wang, which achieved a

Transformer Model Architecture for Inference Latency Prediction

test set MAE of 0.01619 seconds [4]. By comparison, the
transformer model reduces the average prediction error by
nearly 76.5%.

The mean absolute error (MAE) was selected as the primary
evaluation metric for this task due to its interpretability and
direct relevance to the problem of latency prediction. MAE
measures the average absolute difference between predicted
and actual latency values, providing an intuitive sense of
prediction accuracy. The MAE of 0.0038 implies that, on
average, the model’s latency predictions deviate by just 3.8
milliseconds from the true values. This precision is particu-
larly significant given that the mean latency in the test set is
0.0400 seconds, meaning the transformer model achieves an
error of less than 10% of the average latency.

The baseline linear regression model used in Mendoza
and Wang’s work is a strong baseline due to its simplicity,
efficiency, and ability to capture basic patterns in the data. Its
interpretability and low computational cost make it ideal for
benchmarking more complex models. The transformer model’s
significant improvement over this baseline highlights its ability
to capture the nuanced dependencies within neural network
architectures, validating its advanced design.

TABLE I
LATENCY PREDICTION MEAN ABSOLUTE ERROR (MAE)

Model MAE Mean Latency (Test Set)
Transformer 0.0038 0.0400
Linear Regression | 0.0162 0.0214

The transformer model’s performance in predicting infer-
ence latency represents a significant improvement in neural
network inference latency prediction. By achieving a test set
mean absolute error (MAE) of 0.0038 seconds, this improve-
ment demonstrates the transformative potential of transformer-
based architectures for capturing the intricate relationships
inherent in neural network graphs.

The MAE of 0.0038 is particularly impressive when con-
textualized against the mean latency of 0.0400 seconds. This
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indicates that the transformer model produces predictions that
are both accurate and actionable. For latency-critical applica-
tions, where small errors in prediction can have significant
real-world consequences, such precision is invaluable.

The baseline linear regression model, while effective in
capturing simple relationships between graph structure and
latency, is inherently limited in its ability to model non-linear
and hierarchical dependencies. This limitation is evident in its
significantly higher MAE of 0.01619, which corresponds to
an average error of approximately 40% of the mean latency.
By contrast, the transformer model’s ability to process graph-
structured data with self-attention mechanisms allows it to
uncover patterns and dependencies that the linear regression
model cannot.

IV. CONCLUSION

In this paper, we presented a novel transformer-based ap-
proach for predicting neural network inference latency during
the pre-deployment stages. Using a synthetic data set of
graph-represented feedforward neural networks, our method
captures both structural and computational characteristics of
neural architectures. The use of multi-head sequential attention
in the transformer model enables it to effectively model
intricate relationships between layers, significantly improving
latency prediction accuracy compared to baseline methods
such as linear regression. This demonstrates the capability of
our approach to generalize across diverse architectures and
configurations.

While the transformer model demonstrates excellent perfor-
mance in predicting inference latency, certain limitations high-
light areas for further investigation and potential improvement.

The dataset used for training and evaluation consists of
synthetically generated feedforward neural networks. While
this approach ensures diversity in the architectures, it may
not fully capture the complexities and variations present in
real-world deployments. Factors such as hardware-specific
optimizations, memory hierarchies, and non-ideal runtime
behaviors are not reflected in the dataset. As a result, the
model’s performance on real-world neural networks deployed
in different environments may differ from the results reported
here.

To address this, there are avenues for improving the
transformer model’s capabilities. Incorporating more diverse
datasets, including real-world neural network architectures
and multi-platform latency measurements, would enhance the
model’s robustness. It would also be beneficial to integrate
explicit hardware features into the input representation which
could improve cross-platform performance.

Despite these limitations, the transformer model demon-
strates significant promise for inference latency prediction.
Addressing the outlined challenges and exploring areas for
improvement would further enhance its utility and applicability
in real-world scenarios. These efforts would make the model
an even more effective tool for optimizing neural network
deployment in latency-sensitive applications.

By facilitating more reliable and efficient optimization of
neural network architectures prior to deployment, our approach
empowers developers to design systems that adhere to strict
inference latency constraints. This work contributes to advanc-
ing pre-deployment tools for deep learning systems, with po-
tential extensions to incorporate hardware-specific adaptations
or to explore hybrid models for further enhancing prediction
accuracy.

168



REFERENCES

[1] L. Beglaryan and C. Ringhofer, “Development and training of a deep
learning approach to estimate latency of deep neural network inference,”
American University of Armenia, 2023.

[2] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero: Memory
optimizations toward training trillion parameter models,” arXiv preprint
arXiv:1910.02054, 2020. [Online]. Available: https://arxiv.org/abs/1910.
02054

[3] S. Sinha and Y. M. Lee, “Challenges with developing and deploying ai
models and applications in industrial systems,” Discover, 2024.

[4] D. M. Mendoza and S. Wang, “Predicting latency of neural network
inference,” Stanford University, Tech. Rep., 2020. [Online]. Available:
http://cs230.stanford.edu/projects_fall_2020/reports/55793069.pdf

[5] M. M. Taye, “Theoretical understanding of convolutional neural network:
Concepts, architectures, applications, future directions,” Computation,
vol. 11, no. 3, p. 52, 2023.

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
Neural Information Processing Systems, vol. 30, 2017, pp. 5998-6008.

[7]1 L. Liu, M. Shen, R. Gong, F. Yu, and H. Yang, “Nnlgp: A multi-platform
neural network latency query and prediction system with an evolving
database,” in Proceedings of the 51st International Conference on Parallel
Processing, ser. ICPP °22, 2022.

[8] B. Wang, L. He, L. Song, R. Niu, and M. Cheng, “Attention-linear
trajectory prediction,” Sensors, vol. 24, no. 20, 2024. [Online]. Available:
https://www.mdpi.com/1424-8220/24/20/6636

[91 M. Kippel, L. Ackermann, S. Jablonski, and S. Hirtl, “Attention
please: What transformer models really learn for process prediction,” in
Business Process Management - 22nd International Conference, BPM
2024, Krakow, Poland, September 11-15, 2024, Proceedings, 2024, pp.
203-220. [Online]. Available: https://link.springer.com/chapter/10.1007/
978-3-031-70396-6_12

169



Lovelytics: Multi-Agent
Automation for

Alvina Yang
University of Toronto
alvina.yang @mail.utoronto.ca

Stephanie Lu
University of Toronto
steph.lu@mail.utoronto.ca

Jeff Lu

University of Toronto
jefff.lu@mail.utoronto.ca

Zachary Tang
University of Toronto
zach.tang@mail.utoronto.ca

Sina Fallah Ardizi
New York University
sinafallah98 @ gmail.com

Abstract—This paper addresses the challenge of automating
business tasks using Large Language Models (LLMs) by focus-
ing on two Kkey aspects: generating high-quality prompts from
unclear user input and executing tasks in a modular and scalable
way. The system proposed combines DSPy (Declarative Self-
Improving Programs)-driven prompt generation, which refines
prompts based on feedback and task context, with a multia-
gent execution approach [1]. Unlike common industry practices,
this system reduces manual effort by automating both prompt
creation and task execution. The goal is to make Al-powered
task automation accessible to non-technical users, allowing them
to adopt LLMs into their daily workflow without the need for
specialized knowledge. By democratizing task automation, the
system opens up new possibilities for more efficient workflows
across organizations.

I. INTRODUCTION

Rapid adoption of artificial intelligence in business opera-
tions has fueled the demand for automating complex work-
flows using LLMs. Organizations increasingly rely on LLMs
for document processing, customer service, and data analysis,
seeking improvements in efficiency and scalability. However,
LLM effectiveness depends on prompt quality, and poorly
structured prompts often lead to ambiguous, incomplete, or
misaligned outputs. This presents a significant barrier to this
form of automation, particularly for non-technical users unfa-
miliar with prompt engineering.

This paper introduces a DSPy-driven framework for struc-
tured prompt generation, enabling users to convert vague au-
tomation requests into well-formed, context-aware instructions
that improve LLM performance. Additionally, we develop a
multi-agent task execution system that breaks down workflows
into modular, interdependent steps, improving reliability and
adaptability. Hosted on Lovelytics’ Databricks Azure tenant,
this system ensures secure, scalable automation with direct
access to enterprise datasets. As a Databricks partner, Love-
Iytics enables seamless integration with enterprise workflows
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by allowing secure data retrieval and processing directly from
the Databricks File System (DBFS).

A. Motivation

Despite advancements in Al, prompt engineering remains
a major challenge, especially for nontechnical users. Vague
instructions yield unreliable responses, missing context re-
duces accuracy, and multistep tasks often result in logical
inconsistencies. These issues prevent organizations from fully
leveraging LLMs for automation. Existing solutions, such
as manually crafting prompts and heuristics, offer partial
improvements but struggle with generalization and structured
execution.

B. Problem Definition

This paper addresses the dual challenge of:
1) Generating structured high-quality prompts from am-
biguous user input
2) Executing complex business automation tasks in a mod-
ular and scalable manner
To solve these challenges, we introduce a system that
combines:

e DSPy-driven prompt generation, which dynamically re-
fines prompts based on iterative feedback and task con-
straints, resulting in more effective instructions for LLMs.

o Multi-agent task execution, where specialized agents
manage different workflow stages in parallel.

Unlike traditional prompt engineering methods that rely on
manual refinement, our approach automates prompt optimiza-
tion while managing multi-agent execution, minimizing human
intervention, and increasing task reliability.

C. Limits of LLM Automation

The Occupational Information Network (O*NET) is a com-
prehensive online database of U.S. occupation information,
maintained by the Department of Labor.
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O*NET assists in prompt optimization by providing:

e A detailed breakdown of jobs into specific tasks and
subtasks.

o Industry-specific terminology, responsibilities, and skill
requirements.

« Information on job-specific technologies, skills, and tools.

Users interact with the O*NET database by entering their
job title, allowing us to retrieve and suggest job-related tasks
for automation while also gathering job-specific context to
better understand their role. The automatability of a task by
an LLM depends on its structure, complexity, and input/output
requirements. Highly structured, rule-based, repetitive tasks,
as well as those with a definitive correct answer, are gen-
erally automatable. In contrast, tasks that require real-world
interactions, deep reasoning, or creativity are less suitable
for automation. Table I below highlights key features of
automatable tasks.

TABLE I
FEATURES OF TASKS AUTOMATABLE BY LLMS

Automatable by an LLM

Text-based and well-defined in-
put/output

Not Automatable by an LLM

Real-time decision-making

Pattern recognition, generalization,
and context-based reasoning

Highly specialized tasks

Tolerance for imperfection Multimodal reasoning with real-

world interaction

II. METHODOLOGY

The DSPy-driven prompt engineering component focuses
on refining vague user requests into structured ’superprompts’
that provide the model with clear instructions, contextual
information, and defined constraints. These superprompts im-
prove task accuracy by integrating external knowledge and
breaking down complex tasks into manageable components.
The multi-agent execution system then takes these structured
prompts and efficiently executes them by dividing tasks into
subtasks and assigning them to specialized agents. Together,
these components ensure a scalable, context-aware approach
to automating business processes using LLMs.

A. DSPy-Driven Prompt Engineering

DSPy is a framework for optimizing prompts for LLMs
[2]. It provides an abstraction layer which allows developers
to define tasks declaratively while automatically fine-tuning
the prompts and reasoning strategies using data-driven opti-
mization.

Our approach uses DSPy to transform vague user requests
into structured ’superprompts’ that provide the LLM with
clear instructions and relevant context. Initial user prompts
undergo evaluation to identify their suitability for specific task
types, such as writing or reviewing. Superprompts integrate
external resources such as PDFs and domain-specific data
to enhance accuracy. Utilizing chain-of-thought reasoning,

the DSPy implementation systematically leverages four key
components:

1) Context from files, which tailors responses based on
user-provided documents
2) Domain-specific context, aligning outputs with best
practices
3) Task considerations, defining constraints and dependen-
cies
4) Task subtasks, breaking down automation into structured
steps
The refinement process begins by defining signatures, spec-
ifying task inputs and outputs. DSPy then generates candidate
prompts and evaluates their effectiveness against predefined
criteria. Feedback-based optimization ensures iterative im-
provements by incorporating high-quality prompt samples for
training. The final optimized superprompts are processed by
the multi-agent system, which involves feeding them into
ChatGPT and evaluating performance.

B. Multi-Agent System for Task Execution

The multi-agent system (see Fig. 1) is responsible for
executing tasks derived from DSPy-generated prompts. It does
so by breaking workflows into structured subtasks handled
by specialized agents. The system processes three key inputs:
(1) the processed superprompt from DSPy, (2) instructional
files, which contain instructions and important information,
and (3) supplementary files, which provide useful contextual
information via RAG-based retrieval.

The workflow initializes when the Planner Agent analyzes
the ‘superprompt’ and creates the Task Plan, which divides
the overall task into individual subtasks with execution steps,
displaying the information on the frontend. The user can
choose to modify the Task Plan by adding, removing, or
adjusting subtasks in an interactive refinement loop before
execution begins. Each subtask is assigned to an Executor
Agent, which processes the instructional files and retrieves
supplementary data to generate an output. These agents operate
in parallel for efficiency. Once all subtasks are completed, the
Merger Agent compiles them into a coherent final result. The
Verification Agent then evaluates this output against predefined
criteria. If it meets the required standards, it is finalized;
otherwise, the process repeats up to a user-defined retry limit
to refine the results.

In the second iteration of our design, we introduced an
alternative approach: instead of iterative retries, the system
runs five parallel executions of the full pipeline. A Selector
Agent then evaluates and selects the best overall output,
reducing computational overhead while improving reliability.

III. EVALUATION METHODS

We use two main approaches to evaluate the quality of
our system: human evaluation and GPT-We use two main
approaches to evaluate the quality of our system: human eval-
uation and GPT-based benchmarking. Each method focuses
on different aspects of the generated output to provide a well-
rounded understanding of the system’s performance.
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Fig. 1. Multi-agent system architecture

A. Human Evaluation

Human evaluation focuses on straightforward, objective
criteria:

1) Word count: The total number of words in the output,

averaged across multiple responses.

2) Output format: Checks whether the generated content
matches the requested structure.

3) Instruction adherence: Evaluates whether the interme-
diate and final outputs follow the instructions provided
in the task.

These criteria ensure that the system meets basic expec-
tations, producing content in the correct form and following
the given instructions. LangSmith was used to support human
evaluation.

B. LLM-Based Benchmarking

LLM-based benchmarking focuses on a more detailed eval-
uation of content quality. In this method, advanced LLM
agents, referred to as ’council members’, are used to assess the
generated outputs. These agents evaluate the responses based
on an initial set of metrics. After reviewing the prompt and any
provided instructional files, each ’council member’ suggests
1-3 additional criteria that they believe are important for the
evaluation. These new metrics are then added to the final list.

The final score for each output is calculated by averaging
the scores from all ’council members’. This approach enables
a more comprehensive evaluation of the content, considering
aspects such as relevance, clarity, and depth.

C. Relevant Work

The approach described above draws inspiration from two
primary sources. First, the concept of using multiple LLM
agents as a 'council’ is discussed in the paper Language Model
Council: Democratically Benchmarking Foundation Models
on Highly Subjective Tasks [3]. This paper demonstrates
how collaborative LLM benchmarking can provide a more
comprehensive evaluation for writing-based tasks. The idea
of using multiple LLM agents to collaboratively generate
custom evaluation criteria and assess outputs was particularly
appealing as it minimizes bias and contributes to a more
balanced evaluation.

Second, the methodology outlined in the GitHub repository
[4], which provides guidelines for evaluating writing quality,
also influenced the approach. This repository emphasizes the
use of LLMs to define evaluation metrics for writing tasks,
further guiding the development of the benchmarking process.

D. Tasks for Benchmarking

For the benchmarking, the task automation system was
tested using three different tasks:

« Environmental History of Computing Essay: This task
includes both an instructional file and a supplementary
file, providing context for generating the essay.

o Literary Research Writing: This task includes an in-
structional file and several different books and papers on
a literary work, with information from competing sources
that needs to be referenced in conjunction to each other.

« Fire Safety Protocols: Unlike the other tasks, this one
lacks both instructional and supplementary files, making
it more open-ended and testing the system’s ability to
generate relevant content autonomously.

E. Experimental Setup

To evaluate the performance of different systems against the
proposed multiagent system, benchmarking was conducted on
the output from the following models:

e GPT-40-mini with direct prompting

o GPT-40 with direct prompting

o GPT-03-mini-high with direct prompting

o The proposed system with GPT-40-mini in the backend

Each model was tested three times to ensure consistent and
reliable results.

IV. RESULTS

The experimental results comparing the outputs of various
models against our system are presented in the appendices.
In general, our system demonstrates significantly superior
performance compared to GPT-40-mini and GPT-40. It shows
slight advantage over GPT-03-mini-high, while running at a
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fraction of the cost. We will focus our analysis on the first
task: an essay on the Environmental History of Computing.

The execution of the Environmental History of Computing
Essay task shows significant differences in model performance.
The task involved writing a 2,000-word essay with instruc-
tional and contextual files for guidance.

The 40-mini model generated only 420 words in bullet point
format, failing to meet word count and structural requirements,
with a benchmark score of 52.50. The 40 model performed
better, generating 828 words in paragraph form, but still lacked
the clear thesis-claim-evidence structure of an essay, earning
a score of 78.33. The 03 model, a reasoning-based model,
produced 1,704 words with paragraphs and met the structural
requirements, earning a benchmark score of 82.78. However,
while this model exhibits better performance, it is nearly seven
times more expensive to run compared to our system.

The proposed system, which uses 4o0-mini, produced 1,979
words in well-structured paragraphs and adhered to all instruc-
tions. With a benchmark score of 85.06, it outperformed all
other models, showing that even smaller models can achieve
high-quality outputs when optimized through task automation.

The difference in performance between directly prompting
03-mini-high versus the other models is primarily due to the
reasoning strength of 03, which excels in content coherence.
However, the model still struggles with instruction adherence.
In contrast, our system leverages DSPy for prompt engineering
and LangGraph for parallel execution and subtask decompo-
sition, allowing 4o-mini to generate structured content with
better instruction adherence.

A. Discussion

The primary goal of this work is to optimize the process
of prompt creation and task automation. The DSPy-driven
prompt engineering approach effectively converts vague task
automation requests into structured superprompts, which in
turn enhances the performance of LLMs.

Experimental results demonstrate that the proposed system
outperforms baseline models across several evaluation metrics,
including human evaluation and LLM-based benchmarking.
By leveraging LangChain, the system also supports the parallel
execution of subtasks, which significantly reduces latency,
allowing for faster processing times and improving the overall
efficiency of the task automation process.

V. CONCLUSION

This work presents a system that enhances task automa-
tion by utilizing a multiagent architecture in combimation
with DSPy to transform vague task automation requests
into structured superprompts, optimizing task execution. Ex-
perimentation shows that the proposed system outperforms
baseline models across multiple evaluation metrics, including
human and LLM-based assessments. The system’s modular
design, supported by LangChain, enables parallel automation
of subtasks, enhancing both efficiency and the overall user
experience.

In practice, DSPy lowers the barrier for non-technical users
to automate tasks, which promotes a broader adoption of Al-
driven workflows. By leveraging Databricks and Azure, the
proposed system also ensures secure data access and smooth
integration into existing enterprise ecosystems.

A. Future Work

Future work will focus on further improving the capabilities
of the system, refining existing workflows and user experience,
and extending its functionality in a few key areas:

1) Improvement Pipeline: One potential direction is to
develop a system that focuses on improving existing
work rather than completing new tasks. This could
involve creating a pipeline that takes a current workflow
as input, uses agents to analyze and refine it, and then
outputs an improved version. This approach would en-
able the system to iteratively improve tasks and optimize
existing processes over time, making it more adaptable
to changing requirements.

2) Effective Referencing: Another area for future develop-
ment is enhancing the system’s ability to reference ex-
amples for task output generation, including tone, struc-
ture, and content formatting. By comparing task outputs
with high-quality examples, the system could improve its
ability to generate outputs that align more closely with
user expectations. This would involve developing more
advanced algorithms for contextual understanding and
comparison, allowing for more effective use of external
references during task execution.

These areas of improvement will further increase the flex-
ibility and performance of the system, ultimately enabling
broader application in real-world business automation scenar-
ios.

REFERENCES

[11 A. Yang, S. Lu, J. Liang, M. Arcos, Z. Tang, J. Lu, H. Ye, B. Yang,
S. F. Ardizi, and A. Alomari, “Project Git Repository,” 2024. [Online].
Available: https://github.com/alvina-yang/Lovelytics

[2] O. Khattab, A. Singhvi, P. Maheshwari, Z. Zhang, K. Santhanam,
S. Vardhamanan, S. Haq, A. Sharma, T. T. Joshi, H. Moazam, H. Miller,
M. Zaharia, and C. Potts, “DSPy: Compiling Declarative Language
Model Calls into Self-Improving Pipelines,” 2023. [Online]. Available:
https://arxiv.org/abs/2310.03714

[31 J. Zhao, F. M. P. del Arco, B. Genchel, and A. C. Curry,
“Language Model Council: Democratically benchmarking Foundation
models on Highly Subjective Tasks,” 2025. [Online]. Available:
https://arxiv.org/abs/2406.08598

[4] L. Mazur and C. Norton, “LLM Creative Story-Writing Benchmark,”
2025. [Online]. Available: https://github.com/lechmazur/writing

173



APPENDIX A

TABLE Al
BENCHMARK TASK #1 - HUMAN EVALUATION

Model

Word Count

Output Format

Instruction Adherance

4o-mini 420 Bullet Points No

4o 828 Paragraphs Yes

03-mini-high 1704 Paragraphs Yes

proposed 1979 Paragraphs Yes
TABLE A2

BENCHMARK TASK #1 - LLM-BASED BENCHMARKING SCORES

85.06
82.78
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Model

174




APPENDIX B

TABLE Bl1

BENCHMARK TASK #2 - HUMAN EVALUATION

Model

Word Count

Output Format

Instruction Adherance

4o-mini 533 Bullet Points No

40 917 Bullet Points No

03-mini-high 2154 Paragraphs Yes

proposed 2261 Paragraphs Yes
TABLE B2

BENCHMARK TASK #2 - LLM-BASED BENCHMARKING SCORES

90 |- 88.67
84.33
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73.67
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8
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APPENDIX C

TABLE Cl1

BENCHMARK TASK #3 - HUMAN EVALUATION

Model

Word Count

Output Format

Instruction Adherance

4o0-mini 651 Bullet Points Yes

40 354 Bullet Points Yes

03-mini-high 777 Bullet Points Yes

proposed 2896 Paragraphs Yes
TABLE C2

BENCHMARK TASK #3 - LLM-BASED BENCHMARKING SCORES

83.17
80 |-
=4 7
5 L
Q
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73.67
70.67
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4o-mini 40 o3-mini-high  proposed
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Abstract—This paper introduces Sparse Autoencoder (SAE)-
based Multi-Feature Steering for extracting and controlling latent
representations in neural networks. We extend dictionary learn-
ing research by applying sparse autoencoders to the Gemma-2B
language model to extract monosemantic features and enable
simultaneous steering along multiple feature directions. Our
approach facilitates direct manipulation of feature activations
through an interactive interface, providing precise control over
model behavior. Empirical evaluation comparing instruction-
tuned and untuned model responses reveals that while SAEs
enhance interpretability, challenges persist including feature
entanglement, overfitting, and coherence degradation. Despite
smaller models having limited capacity to encode high-level
conceptual features, structured multi-feature interventions yield
valuable insights into neural network activations. Our contrastive
methods for feature extraction demonstrate superior precision
compared to existing auto-interpretability techniques.

I. INTRODUCTION

Mechanistic interpretability seeks to understand neural net-
works at the circuit level by decomposing complex systems
into simpler, comprehensible components. This approach ex-
amines individual neurons, attention heads, and channels to
determine their specific functions and interactions. By achiev-
ing this granular understanding, we gain transparency into
neural mechanisms, enabling more precise model refinement
and providing deeper insights into emergent intelligence while
helping prevent unexpected behaviors.

A. Background

Current interpretability methods include saliency maps
(highlighting network focus in images), feature importance
scores (similar to SHAP), and post-hoc explanations using
local linear approximations. However, these approaches have
significant limitations—they often provide only surface-level,
correlation-based insights rather than revealing the underlying
computational structures that drive neural network behavior.
Moreover, these methods generally operate as black-box anal-
yses, examining inputs and outputs without illuminating the
intermediate processing that forms the foundation of neural
computation.
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B. Related Work

Our research builds upon three significant papers from
Anthropic addressing neural network interpretability. The first,
”Toy Models of Superposition” [1], investigates how neural
networks can represent more features than their dimensional
capacity through the phenomenon of superposition.

As Sparsity Increases, Models Use “Superposition” To Represent More Features Than Dimensions

Increasing Feature Sparsity

Feature Importance

80% Sparsity
most important features The four most
are given dedicaf orthegonal
dimensions, whi her feature
are not embedded.

920% Sparsity
tant feature: Al five features are

as a pentagon, but th
positive interference.

Fig. 1. Illustration of feature representation in neural networks as sparsity
increases. At 0% sparsity, distinct neurons represent important features. At
80% sparsity, features pair as opposite directions within neurons. At 90%
sparsity, features become densely packed around geometric shapes, increasing
representation capacity but introducing interference.

This research demonstrated that superposition allows net-
works to compress information efficiently by tolerating con-
trolled interference, enabling representation of more fea-
tures than available dimensions. However, a key limitation
emerges: individual neurons often become polysemantic, en-
coding multiple unrelated concepts, which significantly com-
plicates understanding their specific functions. The second
paper, "Monosemanticity: Decomposing Language Models
with Dictionary Learning” [2], introduces sparse autoencoders
to decompose one-layer transformer model activations into
distinct features, substantially improving interpretability.
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Fig. 2. Human evaluation scores comparing interpretability of features
extracted via sparse autoencoders (pink) versus individual neurons (teal).
Features consistently received higher interpretability scores with a median
of 12, while neuron scores clustered near 0.

Densty

Fig. 3. Automated interpretability assessment using Spearman correlation
between activations and specific behaviors. Extracted features (right) show
significantly stronger correlations compared to neuron activations (left), which
exhibit near-random patterns.

While these results confirmed that sparse autoencoders sub-
stantially enhance interpretability, several challenges remain:

1. feature splitting, where interpretable features fragment as
extraction scale increases;

2. interference between features that limits perfect monose-
manticity;

3. overfitting to training data patterns rather than capturing
generalizable concepts; and

4. persisting ambiguity in some extracted features that lack
clear correspondence to human-understandable concepts.

The third paper, ”Scaling Monosemanticity: Extracting In-
terpretable Features from the Claude 3 Sonnet” [3], applied
dictionary learning at scale to investigate monosemantic fea-
tures in large language models. This research demonstrated
that sparse autoencoders could successfully extract inter-
pretable features from large models and that scaling improves
autoencoder training efficiency. Nevertheless, many extracted
features still exhibited superposition, highlighting the persis-
tent complexity in large-scale networks.

C. Motivation and Contribution

Our research addresses a critical gap in existing inter-
pretability solutions: their inadequacy in exposing internal
computational structures and addressing the polysemantic
challenge. We make several key contributions:

1. We develop a methodology for identifying and manipulat-
ing multiple meaningful features simultaneously using sparse
autoencoders applied to pre-trained language models.

2. Rather than theoretical exploration, we implement prac-
tical mechanisms for users to directly manipulate specific
feature activations, enabling fine-grained control over model
behavior.

3. We introduce a contrastive approach for feature selection,
comparing activations from positive and negative prompts to
isolate and fine-tune specific semantic features.

4. We formalize a mathematical framework for multi-feature
steering that enables predictable and interpretable model ma-
nipulation. The mathematical foundation for our multi-feature
intervention is:

W=h+)» aw (1)
=1

where h represents the original hidden state, v; corresponds
to a monosemantic feature direction, and «; is a user-defined
tuning factor that scales each feature’s contribution. The
original logits are computed as:

{=Wh @)

After applying the multi-feature intervention, the modified
logits become:

=W {h+> au; 3)
i=1
The combined logit shift is:

AL=" (W) )

i=1

This equation quantifies how each feature’s activation adjust-
ment («;) propagates through the model to influence final out-
puts. Under approximate linearity and feature independence,
these effects are additive in the output space, with each term
a;(Ww;) quantifying how strongly feature ¢ biases the logits.

Our approach enables validation through careful measure-
ment of how adjusting «; causes predictable and interpretable
changes in desired directions, assessed through psychometric
benchmarking and accuracy evaluations.

II. METHODOLOGY

Our research approach acknowledges inherent limitations in
smaller language models like Gemma-2B compared to larger
models developed by organizations such as Anthropic. Smaller
networks often lack the representational capacity to form high-
level conceptual features that emerge naturally in larger mod-
els with broader activation spaces. Additionally, computational
constraints limit comprehensive network decomposition at the
scale achieved by larger Al research labs. Therefore, rather
than attempting to uncover all latent features, we developed
a structured methodology using contrastive set analysis and
targeted sparse autoencoder interventions to extract the most
meaningful and interpretable features.
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Fig. 4. Interactive user interface for feature steering, showing feature
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A. Feature Extraction and Analysis

We developed a systematic contrastive set analysis method
to extract interpretable features. This process involved:

1. Defining positive token sets that should activate when
the model processes specific concepts, and negative token sets
that should remain inactive for those concepts.

2. Conducting forward passes using positive feature tokens
through Gemma-2B to identify prominent activations, reveal-
ing regions of interest where meaningful representations form.

3. Attaching a sparse autoencoder (SAE) to the 17th trans-
former layer—strategically selected as an intermediate depth
where conceptual abstraction occurs, balancing low-level to-
ken embeddings with emerging contextual representations.

4. Using the SAE to decompose the network’s residual
stream, identifying distinct monosemantic directions that cor-
respond to specific interpretable behaviors.

We implemented rigorous feature selection through activa-
tion thresholding based on predefined conditions:

- A feature is retained if its activation exceeds a positive
threshold ¢, in the positive token set

- A feature is discarded if its activation exceeds a negative
threshold ¢,, in the negative token set

This filtering ensures extraction of features that meaning-
fully differentiate between positive and negative contexts,
enabling targeted study of concept encoding within the model.
To enhance semantic interpretability beyond numerical acti-
vation values, we integrated Neuronpedia’s API to retrieve
textual explanations for identified features, providing human-
understandable descriptions of each feature’s function.

Prev Feature Next Feature

Reset Sliders

Apply Offsets

Fig. 5. Feature steering visualization showing activation patterns across
different model components.

B. Interactive Feature Manipulation

We developed a Gradio-based interactive dashboard incor-
porating Neuronpedia’s visualization tools, enabling users to
examine feature manifestations in the model. A core innova-
tion in our research is the manual feature tuning mechanism,
allowing users to adjust activation scaling factors through
interactive sliders. These adjustments bias the model toward
specific conceptual directions, facilitating empirical study of
how individual features influence generated outputs. The math-
ematical transformation applied is:

Wo=h+Y o (5)
=1

This equation describes how we modify the network’s hid-
den state by selectively adjusting specific feature directions.
The original hidden state / represents the network’s internal
representation before modification.

We introduce controlled interventions by adding weighted
monosemantic feature directions v;, with user-defined scaling
factors «; determining each feature’s contribution strength.
This transformation enables enhancement or suppression of
specific neural features, allowing interpretable and controllable
modification of network behavior.

C. Validation Methodology

To validate feature tuning effectiveness, we implemented
controlled comparisons between model outputs before and
after intervention. We executed parallel forward passes:

1. Untuned Pass: The model generates responses using
default activations

2. Tuned Pass: The model applies adjusted feature activa-
tions before generating responses

Both outputs are displayed side-by-side, enabling direct
comparison of how altered feature activations affect model
reasoning and response structure. We observed limitations
consistent with the model’s size—many extracted features
were lower-level and lacked high-level abstraction. For ex-
ample, we did not identify features corresponding to com-
plex personality traits like extroversion among top extracted
features, suggesting Gemma-2B lacks representational capac-
ity for such abstract concepts. Additionally, some extracted
features exhibited entanglement (partial overlap with multiple
concepts), aligning with superposition research showing how
models store multiple features within shared neurons due to
dimensional constraints.

III. RESULTS AND DISCUSSION

Our comparison of activation modification effects on
instruction-tuned versus untuned models revealed significant
differences in their responsiveness to multi-feature steer-
ing. The instruction-tuned model produced more coherent
responses to queries while still demonstrating clear effects
from feature steering interventions. However, we observed that
excessive activation clamping of certain features occasionally
disrupted the model’s logical reasoning capabilities. This lim-
itation likely stems from the model’s relatively small size (2
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billion parameters), which constrains its capacity to manage
extreme feature activation adjustments without compromising
response coherence.

TABLE III
ACTIVATION CLAMPING CONFIGURATION FOR FEATURES THAT
AUTO-INTERPRETABILITY CLASSIFIED AS UNRELATED TO ANIMALS.

The following results in Table I illustrate feature extraction Feat“61'e ID | Description (AbfbreViated) Activation Multiplier
. 15611 Mentions of dogs 1.0
and steering focused on dog-related concepts. Only three of ten - S O co8
; . . 10930 User interactions in forums 1.0
extracted features appear directly related to animals according 13631 Animal rights information 10
to automatic interpretation. 13514 Technical instructions 1.0
7922 Pet/animal phrases 1.0
5373 Bullet points, lists 10.0
TABLE 1 3591 Locations and events 1.0
NEURONS IDENTIFIED AS POTENTIALLY RELATED TO DOGS, WITH 15525 Social media platforms 1.0
AUTO-INTERPRETABILITY DESCRIPTIONS. 13571 Names starting with “Da.” )
Feature ID | Activation (pos/neg) | Auto-interpretability Description 2675 Numbers and codes 4.6
15611 4.5940/0.0000 Mentions of dogs
10930 0.7111/0.0038 User interactions and discussions in online forums
or communities
13631 0.6847/0.0000 Information related to animals, animal rights, and TABLE IV
animal welfare MODEL RESPONSE WHEN CLAMPING SEEMINGLY UNRELATED FEATURES,
13514 0.5626/0.0000 Technical instructions and terms related to devices REVEALING A HYBRID IDENTITY BETWEEN AN LLM CHATBOT AND A
and technology
7922 0.5147/0.0000 Phrases related to pets or animals DOG.
5373 0.4808/0.0011 Phrases starting with bullet points, list items, or
commands Query What are you?
3591 0.4599/0.0000 Mentions of locations and events Untuned I am an AI language model. I am a computer program
15525 0.3342/0.0000 Social media platforms and proper names related to Answer that can understand and process language and complete
politics and events L i N | P |
13571 0.3286/0.0000 Phrases related to names starting with "Da.” tasks. Sure, Ivc‘m help answer ‘my. questions you have.
2675 0.3264/0.0000 Numbers and codes Is there anything I can help you with?
Tuned An- | I am a large language model trained by Google. I is a
swer breed of learning that learns to understand and commu-
. ' . . nicate. I is trained to understand natural language and
When we maximally clamped the “mentions of dogs” fea- learn new words and tricks. It learns new commands and
ture while moderately activating other animal-related features, tricks through training.

we observed an interesting effect on model behavior (Table II).

TABLE II
OUTPUT STEERED WITH FEATURES RELEVANT TO ANIMALS, SHOWING
HOW ACTIVATION CLAMPING CAUSES THE MODEL TO ADOPT A DOG-LIKE
PERSPECTIVE IN ITS RESPONSE.

Query What are you?

Untuned I am an AI assistant that can answer questions and pro-

Answer vide information. I am designed to help you understand
the world and make better decisions. Is there anything I
can help you with?

Tuned An- | I'm a good ol’, friendly, and friendly! I'm a lover of

swer physical and social play. I's a natural, and I's the best
friend.

Remarkably, the language model began to identify itself
as a dog when steered by clamping dog and animal-related
neurons. Comparing this to the unmodified baseline response
demonstrates how dramatically steering affects model output,
shifting it toward the clamped feature directions. We then
conducted a crucial experiment testing features that auto-
interpretability had classified as unrelated to dogs or animals.

This experiment yielded a particularly significant finding:
despite auto-interpretability classifying these features as unre-
lated to dogs or animals (Table III), our contrastive approach
successfully extracted them—and when clamped, they steered
the model toward the intended direction (Table IV). This
demonstrates that our contrastive approach can identify seman-
tically relevant features more effectively than standard auto-
interpretability techniques, which sometimes fail to recognize
important concept encodings.

The instruction-tuned model showed ability to integrate
clamped activations into relatively coherent responses, while
the untuned model struggled to incorporate activation modifi-
cations into logical outputs. The untuned model often fixated
excessively on tuned features, producing responses that lacked
overall coherence. This limitation likely stems from both the
model’s size limitations and its lack of instruction tuning for
dialogue-based tasks. An example output from the untuned
model steered toward generosity and support illustrates this
issue (Table V).

TABLE V
RESPONSE FROM UNTUNED MODEL STEERED TOWARD GENEROSITY AND
SUPPORT, SHOWING REPETITIVE MENTION OF “HELP” AND REDUCED
COHERENCE.

Query My friend is in a difficult situation and I am thinking of

Untuned
Answer

My friend is in a difficult situation I am thinking of going
to help her out by giving her two pairs of sunglasses for
the sun while fishing. Any preferences on what type or
colour to give her. Im not a fan of mylar polarized but my
thoughts on that. Im having a tough time finding either,
the Ray-...

My friend is in a difficult situation I am thinking of him
more than he would like me to think of him. I just wanted
to help get out as much as the money I can and also
keep up with my health and I know from his experience
he comes down daily. There is someone that would help

Tuned An-
swer

you out...

The tuned response repeatedly mentions “help” and
attempts to provide support, but struggles with coher-
ence—demonstrating how maximal feature clamping over-
whelms smaller models, causing them to incorporate features
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without sufficient fluency. The untuned model’s baseline re-
sponse also shows reduced clarity, further highlighting the
model size constraint.

Our findings demonstrate that sparse autoencoders effec-
tively extract features from language models and enhance
monosemantic neuron identification. Moreover, our contrastive
approach provides a potentially more effective method for fea-
ture extraction than standard auto-interpretability techniques.
However, model performance limitations at our tested scale
remain evident. Future research applying this methodology
to larger models with greater computational resources would
likely yield more nuanced insights into how modern large
language models handle multi-feature steering.

IV. ETHICS

Our research raises important questions about potential
misuse of feature steering, particularly regarding bypassing
LLM safeguards. Our findings indicate that multi-feature
steering is less effective at circumventing safety mechanisms
compared to more targeted methods. However, this work
provides valuable insights into how safety mechanisms are
encoded within neural networks, potentially informing more
robust polysemantic safety implementations that resist targeted
manipulation. Understanding these encoding patterns could
ultimately strengthen, rather than weaken, model safety by
suggesting architectural modifications that distribute safety
mechanisms across multiple features, making them more re-
sistant to individual feature interventions.

V. CONCLUSION

This research advances mechanistic interpretability by in-
troducing Sparse Autoencoder-based Multi-Feature Steering,
a method for extracting and controlling latent representations
in neural networks to enhance transparency and controllabil-
ity of language models. Building on superposition research,
our approach addresses the challenge of polysemantic neu-
rons—where individual neurons encode multiple unrelated
concepts—by enabling structured steering of disentangled
feature activations. By leveraging recent advances in dictionary
learning and monosemantic feature extraction, we provide
deeper understanding of how language models represent infor-
mation at the neuron level and demonstrate how models can
be made more transparent, steerable, and aligned with human
intent.

While our method improves feature separation and steering,
several challenges persist. Our experiments with Gemma-
2B reveal that smaller models may lack capacity to encode
complex high-level conceptual features, limiting their ability to
leverage feature steering fully. Feature entanglement, sparsity
trade-offs, and ensuring generalizability of extracted features
across architectures remain open challenges. Additionally, ex-
cessive activation clamping often disrupted model coherence,
highlighting the importance of careful feature selection and
calibrated activation scaling.

This work contributes to Al alignment and safety by pro-
viding a structured approach to understanding, modifying,

and controlling deep learning models at the feature level.
By introducing a scalable method for steering Al behavior
through interpretable feature extraction, we advance the de-
velopment of more reliable, controllable, and transparent Al
systems—particularly valuable for high-stakes applications in
legal Al, medical diagnostics, and automated decision-making,
where model accountability and interpretability are essential.

VI. FUTURE WORK

Our future research will focus on refining and expanding
Sparse Autoencoder-based feature steering along several key
dimensions. We aim to enhance multi-feature steering by op-
timizing feature selection methods and balancing techniques,
developing more structured approaches to create predictable,
stable, and effective interventions across contexts. This in-
cludes improving feature selection mechanisms to increase
intervention precision while minimizing unintended feature
interactions.

We plan to establish standardized evaluation bench-
marks measuring feature steering effectiveness across diverse
datasets, architectures, and steering techniques. A consistent
evaluation framework is essential for comparing different
interpretability approaches and ensuring reproducibility. De-
veloping a comprehensive benchmark suite for mechanistic
interpretability will enable structured, quantitative assessment
of steering performance across the field.

The generalizability of our findings across different model
architectures, training regimes, and domains requires further
investigation. The specific features identified and their respon-
siveness to steering may vary substantially across different
models, potentially limiting the broader applicability of spe-
cific feature interventions discovered through our methodol-

ogy.
VII. LIMITATIONS

Several significant limitations in our work must be acknowl-
edged. First, compute requirements severely constrained our
ability to test larger language models. Even the Gemma-2B
model required up to 17GB of VRAM, making experiments
with larger models like Gemma-7B infeasible with our avail-
able computational resources. This limitation is particularly
significant as we hypothesize that larger models with richer
feature spaces would likely demonstrate more consistent and
interpretable outputs when subjected to multi-feature steering.

Second, our feature extraction methodology, while effective
for identifying some interpretable features, still faces chal-
lenges in extracting high-level abstract concepts in smaller
models. The limited representational capacity of Gemma-2B
means that some complex conceptual features simply may not
exist within the model in a form amenable to isolation and
manipulation.

Third, our evaluation metrics for measuring the impact
of feature steering interventions would benefit from further
standardization and validation. While we observed clear qual-
itative effects from feature manipulation, developing more
robust quantitative measures of steering effectiveness remains
an important area for refinement.

181



[1]

[2]

[3]

REFERENCES

N. Elhage, T. Hume, C. Olsson, N. Schiefer, T. Henighan, S. Kravec,
Z. Hatfield-Dodds, R. Lasenby, D. Drain, C. Chen, R. Grosse,
S. McCandlish, J. Kaplan, D. Amodei, M. Wattenberg, and C. Olah,
“Toy models of superposition,” Transformer Circuits, 2022. [Online].
Available: https://transformer-circuits.pub/2022/toy_model/index.html

T. Bricken, A. Templeton, J. Batson, B. Chen, A. Jermyn, T. Conerly,
N. L. Turner, C. Anil, C. Denison, A. Askell, R. Lasenby, Y. Wu,
S. Kravec, N. Schiefer, T. Maxwell, N. Joseph, A. Tamkin, K. Nguyen,
B. McLean, J. E. Burke, T. Hume, S. Carter, T. Henighan, and
C. Olah, “Monosemanticity: Decomposing language models with
dictionary learning,” Transformer Circuits, 2023. [Online]. Available:
https://transformer-circuits.pub/2023/monosemantic-features/index.html

A. Templeton, T. Conerly, J. Marcus, J. Lindsey, T. Bricken, B. Chen,
A. Pearce, C. Citro, E. Ameisen, A. Jones, H. Cunningham, N. L.
Turner, C. McDougall, M. MacDiarmid, A. Tamkin, E. Durmus,
T. Hume, F. Mosconi, C. D. Freeman, T. R. Sumers, E. Rees,
J. Batson, A. Jermyn, S. Carter, C. Olah, and T. Henighan, “Scaling
monosemanticity: Extracting interpretable features from the claude
3 sonnet,” Transformer Circuits, 2024. [Online]. Available: https:
/Itransformer-circuits.pub/2024/scaling-monosemanticity/index.html

182



Prophetlet: Predictive Maintenance Modelling
Using LSTM, Random Forest, and XGBoosting to

Forecast RUL Metrics of NASA Turbofan Jet
Engines

Arjan Waraich Max Huddleston

Kushad Manikandan Sidney Shu

University of Toronto Schools University of Toronto Schools University of Toronto Schools University of Toronto Schools

waraicharjan97 @ gmail.com c0dr.9595 @gmail.com

Andi Guo

University of Toronto Schools
guoan@utschools.ca

Abstract—This project develops a predictive maintenance
model for jet engines using the NASA C-MAPSS dataset. The
model utilizes supervised learning to classify engine health
states and predict Remaining Useful Life (RUL). Key techniques
include data preprocessing, feature engineering, and machine
learning algorithms optimized for time-series forecasting. Model
performance is evaluated using RMSE, MAE, and overall loss
between epoch gradients, with correlation matrices aiding feature
selection. Future improvements include advanced deep learn-
ing techniques to enhance accuracy and adaptability, allowing
machine owners to fine-tune the model with custom data for
broader deployment. The model achieves a considerable accuracy
of 87.4% with a 2% standard deviation. This approach enables
proactive maintenance, reducing downtime and operational costs.
See the project Github.

I. INTRODUCTION

In modern machine and industrial operations, especially in
industries such as manufacturing, warehousing, and aerospace,
the reliability of complex machinery and robotics is critical in
ensuring both safety, efficiency, cost-effectiveness, and coher-
ence. The practice of Predictive Maintenance has emerged as
a novel strategy for mitigating unplanned failures of machines,
detecting anomalies, result optimization, safety regulation, and
business cost cutting — by leveraging data-driven techniques
and sensor technologies, such as IoT or LPWAN (Low-Power
Wide-Area Networks) etc., to anticipate and predict equipment
degradation before critical faults occur. Unlike reactive main-
tenance, which addresses failures after they happen, predictive
maintenance enables logistically tactical proactive interven-
tions, which help fine-tune maintenance schedules, reducing
operational disruptions — directly improving cost efficiency
in terms of pay for routinely-established repair tasks, for
example. More specifically, in aerospace and related industrial
settings, the ability to accurately predict the Remaining Useful
Life (RUL) of jet engines is critical in saving time, lives, and
costs.

Dora Li
University of Toronto Schools
lido@utschools.ca

kmkushad @ gmail.com shusi@utschools.

Jaotin Ling
University of Toronto Schools
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A. Motivation

In industry, RUL is a key metric defined as the estimated
time an asset or component has left before it needs to be
replaced or repaired, making it key information for predictive
maintenance and asset optimization. By forecasting the num-
ber of cycles an engine can operate before requiring main-
tenance or failure — at a certain operational setting or under
critical circumstances of key variables (for example @ 78%
engine power at an altitude of 32,000 feet, with a certain EDR
turbulence setting, under certain external wind conditions) —
the benefits of the implications of accurate RUL prediction
extends to minimizing unexpected failures, enhancing safety
(commercial), and saving both time and money. [1] However,
conventional approaches to RUL estimation struggle heavily
with real-world conditions due to the complexity of engine
degradation and the variability in operational environments,
the nature of which is by virtue of the tremendous amount
of data generated by sensors on a time-series basis. Due to
the inept nature of traditional methods, certain deep learning
techniques, particularly those capable of analyzing time-series
data from engine sensors, enable more precise forecasting
of potential failures. For instance, Long Short-Term Memory
(LSTM) networks have been effectively utilized to predict
RUL by learning from historical operational data and maintain-
ing certain memory states to thus analyze trends. Incorporating
specially designed loss functions (such as ASUE - average safe
underestimation error, or MAE - mean absolute error, used
in tandem with a threshold) that penalizes overestimation of
RUL further improves the model’s reliability, as demonstrated
in recent studies. Implementing such techniques in predictive
maintenance not only optimizes maintenance schedules but
also enhances the safety and reliability of aviation operations,
if airlines were to employ these predictive analytics for exam-
ple. Overestimation of RUL should be heavily punished, as in
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realistic scenarios, there is no function beyond failure, and in
the scope of aviation, these key errors in real implications can
prove to be exorbitant and fatal. [2]

B. Related Works

The NASA CMAPSS Jet Engine dataset was used in
a challenge competition at the International Conference on
Prognostics and Health Management (PHM) in 2008, where
researchers and teams competed to employ certain data an-
alytic techniques and machine learning in order to improve
prognostics for the RUL vector. Current research and attempts
on the same datasets are still being continued to this day with
an open-ended, no close-date, challenge. [3]

Among the top-performing approaches as of 2016,
similarity-based modeling demonstrated significant effective-
ness, achieving a competition score of 512.12 and a mean
squared error (MSE) of 152.71. This method involved the
manual selection of key sensor features—specifically sensors
7, 8, 9, 12, 16, 17, and 20—based on their continuous
and consistent degradation trends (see table in methodology
section on sensor allocations for further context). To construct
the predictive framework, the first 5% of the data for each
engine instance was labeled as the healthy state, while the
remaining 95% was designated as failure data. Afterward,
the data was then categorized into six bins, corresponding to
six distinct operating conditions, with each bin being used to
train a separate exponential regression model to characterize
the progression from healthy operation to failure. The final
RUL estimate was obtained by aggregating predictions from
all models, and a post-processing step was applied to cap
the estimates at a predefined threshold, thereby reducing the
likelihood of late predictions. [4]

Recurrent Neural Networks (RNNs) have also been em-
ployed as an alternative approach, achieving a competition
score of 740.31 with an MSE of 224.79 [5]. Unlike similarity-
based methods, RNNs leverage functional mappings between
input features and RUL to capture time-dependent degradation
patterns, and to enhance predictive accuracy, a Multilayer Per-
ceptron (MLP) classifier was initially trained to differentiate
between healthy and faulty states, achieving an error rate
of only 1%. However, due to the time-series nature of the
data, RNNs were ultimately chosen over MLPs, as they are
inherently more effective at modeling sequential dependencies
and handling truncated instances. [5] The model utilized
all available sensor and operational features, with gradients
computed through truncated backpropagation through time,
complemented by an extended Kalman filter to refine weight
adjustments. To mitigate overestimation penalties, RUL pre-
dictions were capped at 130 cycles. Additionally, an evolution-
ary approach based on differential evolution was incorporated
to improve model robustness and create an aggregate of
efficient parameterization — meaning that a large number of
RNNs were produced, modelled and trained, from wherein
the top performing-models were selected for validation. Cross-
validation on the dataset revealed that engine health degrada-
tion typically follows four distinct phases: steady operation,

an inflection point or “’knee,” accelerated degradation, and
eventual failure. [5]

Another noteworthy methodology combined MLPs with
Kalman filtering techniques to enhance RUL estimation. While
MLPs provided a strong functional mapping between sensor
data and RUL, Kalman filters were employed to iteratively
refine the model’s predictions, particularly in dynamic oper-
ational conditions. This hybrid approach sought to balance
computational efficiency with predictive accuracy, addressing
some of the inherent limitations of purely neural network-
based models. [6] The study by Ramasso and Saxena (2014)
on this competition and the various methodologies employed
offers a holistic analysis of the different prognostic algorithms
that were applied to the C-MAPSS datasets, focusing on
challenges such as sensor noise, varying operating conditions,
and multiple simultaneous fault modes. By benchmarking var-
ious methods, including similarity-based models and recurrent
neural networks, their study helped highlight which research
teams and their methodologies’ entailed certain strengths and
limitations with their respective model approaches — helping
guide the development of more robust predictive models. [7]

C. Problem Definition

Building upon these methodologies, this project aims to:

o address these challenges by capitalizing on the abundance
of data from jet engine sensors

e develop a preliminary deep learning-based predictive
model trained on NASA’s C-MAPSS dataset (stemmed
from the PHMOS Prognostics challenge) for aeronautic
Turbofan jet engines, incorporating tree-based methods
(random forests, extreme gradient boost trees) and an
LSTM network (long short-term memory) to improve
accuracy and minimize deviation in RUL estimation.

II. METHODOLOGY

This section outlines the approach taken to develop the
predictive model for jet engine Remaining Useful Life (RUL)
estimation. The process involves data preprocessing, feature
engineering, model selection, training, and evaluation. All
throughout development process data visualizations were ap-
propriated to provide visual interpretation of the analysis

The following steps were taken in order to accomplish the
aim of the paper.

1) Data Preprocessing: The NASA C-MAPSS dataset was
loaded into a Pandas DataFrame, where key sensor read-
ings and operational settings were visualized to under-
stand their distributions. Missing values were examined
and handled appropriately, ensuring data consistency
before further processing. Error functions were also
defined.

2) Modelling & Proposed Solution: normalizing the data,
scaling, and labelling output vectors of actual RUL
data provided the data set. For modeling, a hybrid
approach was implemented using Long Short-Term
Memory (LSTM) networks for capturing time-dependent
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degradation patterns, along with Random Forest Regres-
sion and XGBoost to improve predictive accuracy and
generalization.

3) Evaluation & Error Analysis: The model’s perfor-
mance was assessed using multiple evaluation metrics to
ensure robustness and accuracy in predicting Remaining
Useful Life (RUL). Root Mean Squared Error (RMSE)
was used as the primary metric due to its sensitivity
to large errors, making it suitable for capturing devia-
tions in long-term degradation predictions. Additionally,
Mean Absolute Error (MAE) was calculated to provide
an average magnitude of prediction errors without pe-
nalizing larger deviations disproportionately. To further
analyze model performance, the overall loss trend across
epochs was tracked to observe how effectively the mod-
els learned from the data over time. By examining the
loss curves, overfitting and underfitting were identified,
guiding adjustments in model complexity and regular-
ization techniques. These combined evaluations ensured
a comprehensive understanding of the model’s predictive
reliability and alignment with real-world degradation
patterns.

4) Model Refinement: Additional hyperparameter tuning
was conducted for LSTM, Random Forest, and XGBoost
models to optimize predictive performance. XGBoosting
was later added on the initial LSTM model for model
accuracy and robustness, and was also fine-tuned Further
analysis included examining the impact of different
sensor combinations, refining feature selection using
heatmaps and correlation matrices, and assessing the
significance of various preprocessing techniques through
other visualizations

Important steps included acknowledging and understanding
the layout and schematic of the engine, and how certain
sensor data contributes to RUL data in different weightages.
Understanding the influence of each sensor on the prediction is
critical, as different engine parameters contribute unequally to
degradation modeling. Some sensors, such as core speed (Nc)
and burner fuel-air ratio (farB), have a stronger correlation
with engine wear, while others may introduce noise if not
properly accounted for. Identifying these varying weightages
ensures a more accurate and reliable predictive model. See the
engine schematic for the anatomy of a Turbofan engine.

Figure 1: Schematic representation of a turbofan jet engine, illustrating key
components and sensor locations used for predictive maintenance. The dia-
gram highlights major sections, including the Fan, Low-Pressure Compressor
(LPC), High-Pressure Compressor (HPC), High-Pressure Turbine (HPT), and
Low-Pressure Turbine (LPT). Sensor placements for temperature, pressure,
speed, and mass flow measurements are indicated, aligning with the input
features used in Remaining Useful Life (RUL) prediction models.

Considering the respective sensor inputs, the following
input features would accompany the finalized dataframe for
modelling:

Table 1. Summary of the 26 input features used in the predictive
maintenance model for jet engines. The table includes sensor number,
sensor name, measured metric, and corresponding units. The features

encompass operational settings, temperature, pressure, speed, fuel-air ratio,
and coolant bleed measurements, all essential for modeling engine
degradation and predicting Remaining Useful Life (RUL).

Sensor Numbe Sensor Nam Metric Units

Sensor 1 T2 Total Temp at Fan Inlet Rankine
Sensor 2 T24 Total Temp at LPC Outlet Rankine
Sensor 3 T30 Total Temp at HPC Outlet Rankine
Sensor 4 T50 Total Temp at LPC Outlet #2 Rankine
Sensor 5 P2 Pressure at Fan Inlet psia
Sensor 6 P15 Total Pressure in Bypass-Duct psia
Sensor 7 P30 Total Pressure at HPC Outlet psia
Sensor 8 NF Physical Fan Speed rpm
Sensor 9 Nc Physical Core Speed rpm
Sensor 10 epr Engine Pressure Ratio (P50/P2) unitless
Sensor 11 Ps30 Static Pressure at HPC Outlet psia
Sensor 12 phi Fuel Flow Ratio to Ps30 pps/psi
Sensor 13 NRf Corrected Fan Speed rpm
Sensor 14 NRc Corrected Core Speed rpm
Sensor 15 BPR Bypass Ratio unitless
Sensor 16 farB Burner Fuel-Air Ratio unitless
Sensor 17 htBleed Bleed Enthalpy unitless
Sensor 18 Nf_dmd Demanded Fan Speed rpm
Sensor 19 PCNfR_dmd |Demanded Corrected Fan Speed rpm
Sensor 20 W31 HPT Coolant Bleed Ibm/s
Sensor 21 W32 LPT Coolant Bleed Ibm/s

The following data visualization demonstrates the gradual
degradation of frequency and operational capability of the jet
engine as the cycle (akin to a sequence and time-series metric)
number increases over time. This helps visualize the gradient
of degradation as the engine carries through operation:
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Figure 2: Histogram of cycle frequency, illustrating the gradual decline in
operational cycles as engines approach failure. The decreasing frequency of
higher cycle counts reflects the natural degradation process, where fewer
engines remain operational at extended lifetimes.

Furthermore, on top of preprocessing, in light of feature
selection — a correlation matrix is a crucial tool for un-
derstanding the relationships between different variables in
a dataset. It quantifies the strength and direction of linear
associations between features, helping to identify redundant
variables, potential predictors, and dependencies that may im-
pact model performance. In the context of this project, analyz-
ing feature correlations can guide feature selection, reducing
dimensionality and improving model efficiency. Strong cor-
relations between sensor readings and Remaining Useful Life
(RUL) can indicate which measurements are most predictive of
engine degradation, aiding in more accurate failure forecasting,
whereas weaker correlations between input features and the
RUL vector can help demonstrate the weightage of each input
feature respectively on the output. This aids in clarification on
which features to prioritize in regression. These weights were
then used to account for sensor value and impact on RUL.

Figure 3: Heatmap visualization using Seaborn, of the correlation matrix
for jet engine sensor readings and operational settings. The color intensity

represents the strength of correlation between variables, with green indicating
positive correlations and red indicating negative correlations. For example,
T50 and P30 exhibit a strong positive correlation (0.83), while TS50 and
phi show a strong negative correlation (-0.82). The correlation between
cycle_number and RUL (-0.79) highlights the expected relationship between
engine cycles and remaining useful life. These relationships aid in feature

selection.

After feature engineering, a Long Short-Term Memory
(LSTM) network was set up and employed to capture the
temporal dependencies in jet engine sensor data, effectively
modeling the degradation patterns over operational cycles for
Remaining Useful Life (RUL) prediction. The network was
structured to process sequential input features, allowing it to
learn patterns in engine performance decline and make time-
series predictions on impending failures. Additionally, a Ran-
dom Forest Regression model was utilized as a complementary
approach, leveraging its ability to handle complex, nonlinear
relationships between sensor readings and RUL. By aggregat-
ing multiple decision trees, this model provided robust pre-
dictions while mitigating overfitting, offering an interpretable
alternative to deep learning-based methods. XGBoost was fur-
ther explored as a potential enhancement, leveraging gradient-
boosted decision trees to optimize predictive accuracy. In this
context, XGBoost’s ability to handle missing data, capture
feature importance, and improve generalization makes it a
strong candidate for refining RUL estimations and improving
failure prognosis. For quick engagement, a user input field and
aesthetic visualized tabular display were involved to allow the
user to retrieve a desired quantity of predicted RUL values
across the entire lifecycle (approx. 20630 entries).

III. RESULTS

In terms of results analysis and contrasting the accuracy
of RUL vector prediction, The performance of the predictive
models was evaluated by comparing the predicted RUL vector
against the actual RUL metric (as part of the dataset) through
trendline visualizations, both before and after applying XG-
Boost. This comparison provided insight into the effectiveness
of different modeling approaches in capturing degradation
patterns. Additionally, model accuracy was assessed using
three key error metrics: Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), and overall model loss across
training epochs. RMSE was beneficial for penalizing larger
errors more heavily, making it useful for detecting significant
deviations in predictions. MAE provided a straightforward
measure of average prediction error, ensuring interpretability.
The overall model loss curve helped track convergence and
assess whether the model was learning effectively over time.
These metrics quantified the prediction deviations and conver-
gence behavior, highlighting the improvements gained through
boosting techniques.

The pure RUL trendline comparison between actual and pre-
dicted values prior to employing and fine -tuning XGBoosting
in the forest-architecture can be observed:
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Figure 4: Pre-XGBoost Actual vs. Predicted Remaining Useful Life (RUL)
Values by LSTM — The plot compares the predicted RUL (green) and
actual RUL (purple) across training samples before applying XGBoost. The
alignment between the two curves indicates the LSTM model’s predictive
capability, though noticeable deviations suggest room for improvement in
accuracy and generalization.

After XGBoost optimization and hyperparameter fine-
tuning, the accuracy of the model increased significantly,
achieving a 87.4% model accuracy with a standard deviation
of 2%.
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Figure 5: Figure 5: PostXGBoost Actual vs. Predicted Remaining Useful Life
(RUL) Values by LSTM - The plot compares the predicted RUL (green) and
actual RUL (purple) across training samples before applying XGBoost. The
alignment between the two curves indicates the LSTM model’s predictive
capability, though noticeable deviations suggest room for improvement in
accuracy and generalization

The model and error loss curves for the model AFTER
XGBoosting can be observed through the training over 60
epochs:

LSTM Model R~2 Error

— wain
— test

R~

3
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epoch

Figure 6: LSTM Model R? Error Curve — The plot shows the R? error over
epochs for both training (blue) and testing (red) datasets. A higher R? value
indicates better model performance. While the training R? steadily improves,

the test R? fluctuates, suggesting potential overfitting
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Figure 7: LSTM Model Loss Curve — The overall loss function values over
training epochs for both training (green) and testing (purple) datasets. A
decreasing trend suggests the model is learning effectively, but divergence
between train and test loss in later epochs may indicate overfitting. Resembles
MAE Curve — however overall model loss is more controlled, less overfitting,
and relative overall better accuracy.

IV. CONCLUSION

In conclusion, this project successfully developed a pre-
liminary deep learning model for predictive maintenance of
jet engines, leveraging the NASA C-MAPSS dataset utilizing
an LSTM to account for the progression and degradation
of engine frequencies across cycle progression, along with
data regression from feature sampling during tree-based ar-
chitectures such as Random Forest regression — therein ampli-
fied with XGboost algorithms for robustness refinement. The
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model was designed to effectively and relatively accurately
predict Remaining Useful Life (RUL), providing a framework
for early fault detection systems. Through exploratory data
analysis and preprocessing, feature engineering and corre-
lation matrix contrasting (for feature weight comparisons),
and model selection, we established a robust pipeline that
balances classification and regression objectives. Key insights
were gained from correlation matrices, which helped assess
feature importance and refine input selection. The model
achieved an accuracy of 87.4% for predicted RUL output
vector values, with a standard deviation of approx. 2%, in-
dicating relative stability within the predictions — however
certain data visualizations hinted at overfitting, potentially due
to overly-complex modelling or intricate data. The overall
procedure followed a structured approach: data preprocess-
ing (handling missing values, scaling, and feature selection),
correlation analysis to determine input significance, model
training, and evaluation using appropriate performance met-
rics. Moving forward, enhancing model accuracy remains a
primary goal. Advanced techniques such as ensemble learning,
deep recurrent architectures (e.g., LSTMs or Transformers for
sequential failure patterns), and hyperparameter optimization
could significantly improve performance, and incorporation of
differential evolution (creating batches of models and filtering
for top performers) could have been beneficial. Furthermore,
integrating domain adaptation strategies would enable the
model to generalize across various engine types beyond the
C-MAPSS dataset. Another critical next step is expanding the
model’s interactivity by allowing machine owners to deploy it
on their custom equipment, allowing an opportunity to input
custom sensor data entries, and past test sets. This would
diversify the extent of deployment for models in predictive
maintenance, and by facilitating user-driven data integration,
the model can be retrained on specific machinery, making
it more adaptable to different operational conditions. This
would require developing a streamlined pipeline for data pre-
processing, retraining, and deployment. Ultimately, optimizing
model performance while enabling user-driven customization
will be key to maximizing its practical utility in industrial
applications.
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Abstract—The real-time detection of objects in competitive
robotics, particularly for competitions such as RoboMaster, is
critical for rapid and precise decision-making. This study focuses
on developing a robust object detection model utilizing YOLOVS,
optimized for identifying opponent robots’ armor plates in real-
time. The model was trained using publicly available RoboMaster
datasets and implemented data augmentation techniques to en-
hance its generalization capabilities. Evaluation metrics including
precision, recall, and mean Average Precision (mAP) demon-
strated strong overall performance, achieving 95.1% precision,
97.2% recall, and 98.7% mAP at an IoU threshold of 50%.
Despite impressive performance at moderate thresholds, stricter
IoU criteria showed lower mAP scores, highlighting areas for
future improvements. Ethical considerations, including privacy,
transparency, and fairness, were also addressed. The advance-
ments in this object detection model have broader implications,
notably in emergency response and healthcare, signifying its
potential cross-industry impact.

I. INTRODUCTION
A. Motivation

The field of competitive robotics presents an environment
where precision and rapid response are not merely advan-
tageous but essential. In competitions such as RoboMaster,
robots must navigate through complex arenas filled with obsta-
cles while simultaneously tracking opponent robots, requiring
real-time, precise object detection and tracking to allow for
split second decisions. This high-pressure environment serves
as an ideal testbed for developing advanced AI models that
combine rapid response with meticulous precision. By honing
these algorithms under competitive conditions, research is
not only enhancing the performance of robotic systems in
tournaments but are also generating valuable insights into
sensor fusion, real-time data processing, and neural network
optimization that are transferrable to a broad spectrum of
applications.

Our motivation for this project reaches beyond the compet-
itive arena, also to the technological advances derived from
object detection research have far-reaching implications in
other critical sectors, with the potential to save countless lives.
One prominent application is in emergency search and rescue
response, where unmanned aerial vehicles (UAVs), provide
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numerous advantages to rescue operations. Object detection
models, similar to those used in robotics competitions, have
the potential to significantly boost the efficiency of these
operations, which often require a lot of man power [Abbas
et al.,, 2024]. This capability can dramatically reduce search
times, support in disaster assessment and overall improve the
efficiency and safety of rescue operations, potentially saving
countless lives during critical moments.

Healthcare offers another compelling domain where these
object detection technologies can be transformative. In the
detection of tumors, for example, object detection poses a
promising solution. With brain tumors in particular, early
detection is crucial, as they can spread throughout the brain at
a fast rate [Boesch, 2023]. Object detection applications, can
aide medical professionals, making the detection of tumors
faster, and reducing human error, potentially saving the lives
of many patients [Boesch, 2023]. Such innovations underscore
the profound impact that refined object detection technologies
can have on both patient safety and the overall efficiency of
healthcare delivery.

By addressing the dual challenges of high-speed compet-
itive robotics and critical cross-industry applications such
as emergency response and healthcare, this research effort
embodies both principles of theoretical innovation and prac-
tical impact. The competitive robotics environment acts as a
crucible, refining AI models under conditions of extreme speed
and precision, while the lessons learned directly inform and
enhance applications that carry significant societal benefits. Ul-
timately, the development of robust, real-time object detection
systems not only paves the way for advancements in robotic
competitions but also holds the promise of revolutionizing
sectors where precision can have life-altering consequences.
This interdisciplinary approach highlights the transformative
potential of Al-driven object detection, positioning it at the
forefront of both technological innovation and practical, real-
world application.

B. Problem Definition

The paper will focus on the development of an object
detection model which can accurately and precisely detect
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the location of an opponent robot’s armour plate in real-time.
More specifically, this paper will explore the YOLOvVS model
by ultralytics [ult, ]. The model will be run on-device using
the NVIDIA Jetson JetPack and will be trained on online data
from past RoboMaster competitions.

II. RELATED WORK

Recent advancements in real-time object detection have
significantly improved UAV-based applications, particularly in
emergency search and rescue operations, where unmanned
aerial vehicles (UAVs) play a crucial role in quickly identi-
fying people, obstacles, and hazards. Researchers Wu et al.
introduced YOLOvV5_mamba, an optimized YOLOvS model
designed to enhance small-object detection in aerial imagery
[Wu et al., 2024]. Their approach refines YOLOVS5’s backbone
by integrating the C2f module, which improves how the model
extracts and retains important image details, particularly for
small and hard-to-see objects [Wu et al., 2024]. They also
incorporate a bidirectional dense feedback network (BDFN),
which allows different parts of the model to exchange in-
formation across multiple layers, helping it recognize objects
more accurately even in challenging conditions like motion
blur or partial occlusion [Wu et al., 2024]. Finally, an adaptive
gate feature fusion mechanism is introduced to help the model
prioritize the most relevant details in an image while filtering
out unnecessary noise, making detections more precise [Wu
et al., 2024].

Wu et al. tested these improvements on the VisDrone2019
dataset, achieving a 9.3% improvement in mean average
precision (mAP) compared to the standard YOLOvS model
[Wu et al., 2024]. Their modifications address common UAV
detection challenges, such as viewpoint variations, motion
blur, and detecting objects in low-resolution images. By im-
proving how features are processed and shared throughout the
model, YOLOvV5_mamba significantly enhances small-object
detection, making it highly applicable to real-world search and
rescue missions.

Although this work is focused on UAV-based detection,
many of the technical challenges it addresses—such as de-
tecting small, fast-moving, and partially hidden objects in dy-
namic environments—are directly relevant to real-time robotic
vision in competitive settings like RoboMaster. UAV-based
emergency response relies on fast, accurate detection models
to locate people in disaster zones, just as robotic competitions
require rapid identification of opponent armor plates while
dealing with movement and occlusions. The feature-sharing
techniques and filtering mechanisms introduced by Wu et
al. could be adapted to robotic applications, where rapid
changes in the environment make object detection difficult
[Wu et al., 2024]. By applying UAV-inspired improvements to
YOLOVS, our research explores how these optimizations can
enhance object detection in high-speed robotics, strengthening
the connection between autonomous aerial surveillance and
competitive robotic vision.

Beyond UAV-based applications, real-time object detection
has also been explored in medical imaging, where precise

identification of abnormalities is crucial for diagnosis and
treatment. Aldughayfiq et al. developed a YOLOvS5-based deep
learning model for pressure ulcer detection, focusing on the
early identification and classification of ulcers in patients with
limited mobility [Aldughayfiq et al., 2023]. Pressure ulcers,
also known as bedsores, form when prolonged pressure on
the skin restricts blood flow, leading to tissue damage. If
left untreated, these ulcers can worsen, increasing the risk of
infection and serious medical complications. Early detection
is essential for preventing severe cases and improving patient
outcomes. To improve detection accuracy, Aldughayfiq et al.
trained a YOLOvVS5 model to classify ulcers into four severity
stages, using data augmentation and transfer learning to make
the model more reliable across different patients [Aldughayfiq
et al., 2023]. Data augmentation involved artificially expanding
the dataset by applying small modifications to existing im-
ages—such as rotating, flipping, or adjusting brightness—to
help the model generalize better. Transfer learning allowed
them to start with a pre-trained YOLO model (originally
trained on large-scale datasets) and fine-tune it specifically for
ulcer detection, reducing training time and improving accuracy
[Aldughayfiq et al., 2023]. Additionally, they optimized multi-
scale anchor boxes, which help the model detect ulcers of
different sizes more effectively, a technique also used in small-
object detection tasks like UAV-based imaging [Aldughayfiq
et al., 2023]. As a result of these optimizations, their model
achieved an overall mean average precision (mAP) of 76.9%,
significantly improving detection performance compared to
traditional methods [Aldughayfiq et al., 2023]. This study
highlights how real-time object detection models can assist
healthcare professionals by providing an automated system for
early ulcer detection, reducing human error and improving
patient care. Although this research is centered on med-
ical image analysis, the core machine learning challenges
it addresses—such as recognizing small features, refining
feature extraction, and ensuring real-time classification—are
directly relevant to real-time armor detection in RoboMaster
competitions. Just as YOLOVS is trained to detect subtle
patterns and variations in ulcer severity, similar techniques
can be applied to detecting small, partially occluded armor
plates on fast-moving robots. The use of multi-scale anchor
boxes, adaptive feature selection, and transfer learning in
ulcer detection suggests strategies that could help enhance
real-time robotic tracking and classification. By integrating
advancements from both UAV-based object detection and Al-
driven medical imaging, our research explores how YOLOvVS
optimizations can improve real-time object detection in com-
petitive robotics. The ability to detect critical targets under
dynamic conditions—whether in emergency response, health-
care, or robotics—highlights the broader impact of object
detection advancements across multiple fields.

III. METHODOLOGY
A. Dataset

For our project, we used the RoboMasters dataset available
on RoboFlow, which contains 2,779 images. This dataset was
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sourced online and provided a foundation for training our
Al model. However, it is important to note that the Queen’s
Knights Robotics Team (QKRT) has its own dataset, which we
did not have access to. The dataset we used primarily consists
of images related to the RoboMaster competition, featuring
various robots and environments relevant to our application.
While the dataset offered sufficient diversity in terms of
lighting conditions and robot positions, data augmentation
techniques were employed to artificially expand the dataset
and improve model generalization. 40% of the dataset was
augmented by randomly rotating the image +/- 8 degrees.
These augmentations helped the model learn more robust
feature representations, reducing the risk of overfitting to the
limited dataset.

B. Preprocessing

To expand the dataset and diversify the data, we prepro-
cessed our training data by modifying every image, creating
several adjusted versions of the original images, all combined
together into a much larger dataset. First, we rotated every
image randomly between —8° and 8°, not too large of a
maximum rotation so as to minimize blank space. In order to
maintain the validity of the labels, they, too, had to be rotated
the same way. Each label was converted into its absolute
value counterpart, the corners calculated, then the rotation
matrix was applied to each corner of the label, then converted
back into YOLOvS format. We then increased the contrast of
every image by an alpha value of 1.5. Finally, to simulate
artifacts and potential noise created by the camera, a layer of
translucent coloured random noise was added to every image.
This all created four sets of the original dataset: The original,
rotated, contrast adjusted, and noise versions, which were all
combined into the dataset the model was trained on.

C. Modelling

YOLOVS, developed by Ultralytics, is incredibly efficient,
has real-time processing capabilities, and creates a balance
between speed and accuracy. The model is implemented in
PyTorch, making it accessible for both training and deploy-
ment, while offering multiple variants (YOLOvVSs, YOLOv5m,
YOLOVS51, YOLOV5x) that allow for further flexibility depend-
ing on constraints and the project itself. Next, its anchor-
based detection method assures reliable object localization,
which is important for our application. Then, compared to
other YOLO versions, YOLOVS provides an optimized balance
between model size, speed, and detection accuracy, making it
a solid model to use. Additionally, its robust and generaliz-
able architecture, along with its refined processing and data
augmentation, allows for adaptation to many environments.
So, given our focus on real-time object detection, particularly
in autonomous systems, YOLOvS’s fast inference speed and
refined detection capabilities make it the ideal choice for our
implementation.

D. Evaluation Methods

In evaluating the performance of the YOLOv5 model, mean
Average Precision (mAP), Precision, and Recall were used as

the primary indicators of detection quality. The mean Average
Precision (mAP) offers a holistic measure of how accurately
the model detects and localizes objects across various Inter-
section over Union (IoU) thresholds. In our experiments, we
tracked both mAP@0.5 (which uses a fixed IoU threshold of
0.5) and mAP@0.5:0.95 (which averages performance over
multiple IoU thresholds from 0.5 to 0.95). An upward trend
in these values indicates that the model progressively refines
its bounding box predictions. The higher the mAP, the more
reliably the system distinguishes between true positives and
negatives, and the better it captures precise object boundaries.

IV. RESULTS AND DISCUSSION

Model Predictions Ground Truth Labels

Fig. 1. Example Model Output Compared with Ground Truth

TABLE I
SUMMARY OF THE BENCHMARKS PRODUCED IN THE TESTING OF THE
TRAINED YOLOV5 MODEL.

Recall
97.2%

mAP 50
98.7%

mAP 95
52.1%

Precision
95.1%

A. Analysis

Upon analysis of the obtained results, clear insights into the
model’s performance and behavior are evident. The evaluated
metrics demonstrate a strong performance overall, particularly
highlighted by high precision and recall values. Specifically,
the precision value achieved was 0.951, indicating that ap-
proximately 95.1% of bounding boxes predicted by the model
corresponded accurately to actual objects, suggesting minimal
false positives. Additionally, the recall score of 0.972 signifies
that the model successfully detected about 97.2% of the actual
instances, demonstrating its strong capability in identifying the
majority of objects, resulting in few false negatives.

Further examining the model’s capability, the Mean Aver-
age Precision at IoU threshold of 50% (mAPS50) yielded an
impressive score of 0.987 (98.7%). This high value reflects
excellent performance when employing a moderate overlap
threshold, indicating that the model excels in general object
detection scenarios. However, when stricter localization crite-
ria were considered—specifically, the mean average precision
computed across IoU thresholds ranging from 50% to 95%
(mAP50-95)—the model’s performance decreased to 0.521
(52.1%). This drop is typical as the IoU thresholds become
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stricter, demanding more precise bounding box localization.
Thus, while the model is robust in general detection tasks,
there remains room for improvement in scenarios requiring
precise localization.

Regarding the efficiency of the model, the speed metrics
are satisfactory for practical deployment scenarios. Image pre-
processing averaged 3.6ms per image, indicating quick prepa-
ration of input data through resizing and normalization. Infer-
ence time, the most significant portion, averaged at 338.5ms
per image, which is acceptable but highlights potential areas
for optimization, especially for real-time applications. Finally,
Non-Maximum Suppression (NMS), critical for refining de-
tection outputs by filtering overlapping boxes, only required
1.4ms per image, emphasizing its minimal impact on the total
processing time.

Overall, these results highlight the model’s effectiveness and
pinpoint specific aspects—particularly precise localization at
stricter thresholds and inference time optimization—that could
benefit from further refinement. Future efforts could involve
fine-tuning model parameters or exploring advanced architec-
tures to address these identified areas, ultimately enhancing
performance in applications demanding high accuracy and
efficiency.

B. Ethical Considerations

When designing and implementing a robot detection model,
managing the ethical considerations of privacy, transparency,
and fairness is crucial. Privacy is a primary concern, especially
if the model is used in a team setting, as it affects how training
data is collected, used, and stored. This may include sensitive
data, such as real-time images of robots and people, which
should be securely managed if stored and have clear data reten-
tion policies outlining how long it will be stored before being
deleted. It is essential to ensure that only the necessary data for
the intended purposes are collected. Next, transparency is just
as important, requiring thorough documentation that explains
how the model processes information and makes decisions in
case of an error. Fairness is also a key ethical concern, as
there may be time and resource disparities between teams,
which can influence model performance or prevent them from
using the technology altogether. Therefore, in competitive
settings, making these solutions open source and accessible
could help even the playing field. Additional technological
solutions, such as camera control that limits the capture of
sensitive information or anonymization techniques, can further
improve ethical precautions. Addressing these considerations
will help ensure that the model is developed responsibly and
used in a way that aligns with ethical best practices.

V. FUTURE WORK

In future works, we plan to make our model more suitable
for competition use by training it on specialized images
created by our client, QKRT, tailored explicitly to their use-
case scenarios. Additionally, we will evaluate the model’s
inference performance and suitability for real-time deployment
on NVIDIA’s Jetson JetPack platform, aiming to achieve

optimal speed and efficiency in practical, resource-constrained
environments.

VI. LIMITATIONS

Despite implementing pre-processing and augmentation
techniques, our project faced several key limitations. One of
the primary challenges was the size of the dataset. With a
limited number of images, the dataset was relatively small,
limiting the effective training of a computer vision model,
leading to potential generalization issues. The lack of access
to the QKRT’s internal dataset further constrained our ability
to train our model on data that is specific to our team’s dataset.

Hardware limitations also impacted our ability to develop
and fine-tune the model. Due to computational constraints,
there were difficulties training the model on the available hard-
ware. This significantly slowed experimentation and iterative
improvements.

VII. CONCLUSION

This research demonstrated the effectiveness of the
YOLOvVS model in real-time object detection scenarios crit-
ical to competitive robotics, achieving high precision and
recall rates. Specifically, the model obtained a precision of
95.1%, a recall of 97.2%, and a mean Average Precision
(mAP) of 98.7% at a 50% IoU threshold. However, per-
formance decreased under stricter IoU thresholds, indicat-
ing room for enhanced localization precision. Future work
will include training the model on specialized datasets from
Queen’s Knights Robotics Team (QKRT) to further optimize
its accuracy and speed for real-time deployment. Additionally,
addressing hardware and dataset limitations will help improve
the model’s robustness and generalization capabilities. These
enhancements not only promise improvements in robotic
competitions but also demonstrate potential transformative
impacts across other critical fields, such as emergency rescue
operations and medical diagnostics.
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Abstract—RecognEyes is an innovative edge-computing solu-
tion designed to assist individuals with prosopagnosia—a condi-
tion characterized by an inability to recognize faces, which often
leads to social anxiety. Embedded with efficient edge-computing
principles from architectures like EdgeFace [1], RecognEyes
performs local face detection and cropping directly on-device,
significantly minimizing the data sent externally for recognition
tasks. This architecture enables RecognEyes to achieve excep-
tional accuracy, exceeding 99% on a privately collected dataset
containing 5,000 images. Furthermore, it maintains exceptionally
low latency. By providing immediate auditory feedback based on
quick and accurate facial recognition, RecognEyes significantly
enhances social interaction, improving quality of life for users.

I. INTRODUCTION

A. Motivation

Wearable assistive technologies for individuals with sensory
or cognitive impairments have drawn significant attention in
recent years [2], [3]. Prosopagnosia—inability to recognize
familiar faces—poses acute social challenges for those af-
fected, leading to awkwardness in daily interactions, difficulty
forming professional relationships, and heightened anxiety in
public settings [4]. While modern computer vision tools have
progressed, there is a pressing need for a discrete, real-time
recognition solution that does not compromise on form factor.
RecognEyes aims to bridge this gap by embedding facial
recognition directly into a sleek, wearable device.
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<! |Satya Nadella
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CEO of Microsoft
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| |U of Chicago

Sample Cue:

Hey Zain, Satya
Nadella from the
University of Chicago
is ahead of you!

Fig. 1. RecognEyes visual use-case with Satya Nadella, CEO of Microsoft,
giving a keynote talk. (Source: [5])
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B. Problem Definition

a) What is Prosopagnosia?: Prosopagnosia, commonly
known as face blindness, is a perceptual disorder marked by
an inability to recognize or recall familiar faces—even though
other aspects of visual processing often remain fully intact.
Estimates suggest that neurotypical individuals can store and
recognize around 5,000 faces with seeming ease [6], under-
scoring the profound nature of this deficit for those affected.
Two primary forms of prosopagnosia have been identified:
acquired prosopagnosia, which follows a brain lesion (often
occipito-temporal or fusiform damage) and developmental
prosopagnosia, a lifelong variant unaccompanied by any obvi-
ous structural abnormality. In either case, studies demonstrate
that the disorder imposes significant social and emotional
burdens, contributing to stress, anxiety, and a reliance on
compensatory strategies (e.g., hairstyles or voices) that are
frequently unreliable.

Recent research by Albonico and Barton [7] provides a
thorough exploration of the complex neural and behavioral
dimensions of prosopagnosia. Their findings highlight four
major axes of inquiry: (1) Diagnosis, which remains chal-
lenging due to the need for standardized testing protocols and
validated self-report measures; (2) Structural and Functional
Underpinnings, wherein advanced neuroimaging has uncov-
ered both bilateral and right-lateralized neural anomalies in
fusiform and anterior temporal areas; (3) Face-Specificity,
probing the degree to which prosopagnosia may be tied to
broader object recognition deficits; and (4) Rehabilitation,
including recent trials of perceptual learning that show partial
yet promising improvements in face perception for select
individuals. While such rehabilitative measures underscore the
plasticity of visual processing, they do not wholly mitigate
the wide-ranging interpersonal and psychosocial impacts of
prosopagnosia.

Whereas general-purpose wearable solutions—such as smart
glasses—have been explored for various assistive applica-
tions, their designs are rarely optimized for the specialized
needs of prosopagnosia. Current commercial headsets often
provide overlays or information prompts but do not directly
address the fundamental task of identifying and labeling faces
in a low-latency, privacy-preserving fashion. Indeed, users
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with prosopagnosia typically require a discreet, robust, and
immediate mechanism to match an encountered face to a
known identity—an ability which standard wearables do not
sufficiently accommodate. This gap underscores the need for
novel assistive devices that can help prosopagnosic individuals
navigate everyday interactions by offering reliable, on-the-spot
face recognition, ultimately reducing the anxiety and social
withdrawal associated with this condition.

II. RELATED WORK

A. Duchaine
Prosopagnosia

and Nakayama: Neural Mechanisms in

The study Developmental Prosopagnosia: A Window to
Content-Specific Face Processing by Duchaine and Nakayama
[8] marked a significant advancement in our understanding of
face recognition deficits. Their work focused on individuals
with developmental prosopagnosia (DP)—a condition charac-
terized by a lifelong impairment in recognizing faces despite
intact early visual processing and preserved object recognition.
Unlike acquired prosopagnosia that follows brain injury, the
subjects in this study exhibited pure face processing deficits,
suggesting the existence of specialized, content-specific neu-
ral mechanisms for face recognition. Using both functional
magnetic resonance imaging (fMRI) and magnetoencephalog-
raphy (MEG), the authors demonstrated heterogeneous neural
profiles among DPs, reinforcing that the deficits are not due to
a general visual processing failure but to localized dysfunction
in regions such as the fusiform face area (FFA). These
findings provide a strong rationale for developing targeted
assistive technologies—such as wearable systems—that can
help compensate for these specific neural impairments.

B. CNN Optimization for Mobile Devices

Advances in CNN architecture have been pivotal for de-
ploying deep learning models on mobile devices. Researchers
have introduced a variety of lightweight designs—such as
MobileNets, ShuffleNets, and EfficientNets—that strategically
reduce the number of parameters and FLOPs by leveraging
techniques like depthwise separable convolutions, pointwise
group convolutions, and compound scaling. These innovations
enable efficient processing by minimizing computational com-
plexity and memory footprint without incurring a significant
loss in accuracy. The resulting architectures have not only
facilitated general object recognition on resource-constrained
devices but have also laid the foundation for specialized
applications like mobile face recognition. This body of work
underscores the importance of algorithmic efficiency and has
directly influenced the development of models that combine
compactness with high recognition performance.

C. A Review of Deep Convolutional Neural Networks in
Mobile Face Recognition

Chi et al. [9] provide an in-depth review of deep convo-
lutional neural networks (DCNNSs) tailored for mobile face
recognition applications. Their paper systematically compares
traditional architectures—such as LeNet-5, AlexNet, VGGNet,

GoogLeNet, and ResNet—with lightweight models optimized
for mobile platforms, including MobileNet, ShuffleNet, and
EfficientNet. The authors meticulously analyze each model’s
architectural nuances, computational demands, and trade-offs
between accuracy, latency, and energy efficiency. Notably, they
discuss advanced optimization techniques—such as network
pruning, quantization, and the incorporation of attention mech-
anisms (e.g., Squeeze-and-Excitation modules)—that mitigate
the high computational costs typically associated with CNNs
on resource-constrained mobile devices. Additionally, the re-
view addresses challenges such as noise label learning and
the high expense of manual data annotation in large-scale face
datasets, underscoring the need for robust, automated strate-
gies. These detailed insights directly inform our methodology
for selecting and fine-tuning CNN architectures for real-time,
on-device facial recognition.

D. Designing Wearable Technologies for Users with Disabil-
ities: Accessibility, Usability, and Connectivity Factors

Moon, Baker, and Goughnour [10] present a critical review
that examines the design challenges and opportunities in
developing wearable technologies tailored for individuals with
disabilities. Their work synthesizes literature across wireless
connectivity, smart home systems, and Internet of Things (IoT)
applications to underscore the importance of inclusive design
principles. The review emphasizes that for wearables to truly
empower users with disabilities, these devices must be not
only technically robust but also accessible, user-friendly, and
seamlessly connected. By rigorously analyzing factors such
as communication protocols, sensor integration, and adaptive
human-machine interfaces, the authors advocate for a partic-
ipatory design approach in which users with disabilities are
actively involved throughout the development process. This
inclusive methodology is posited to enhance device adop-
tion, mitigate issues of abandonment, and ultimately improve
independent living and community participation. Their find-
ings offer actionable guidelines for designers and developers,
highlighting that a holistic understanding of diverse user
needs—across physical, sensory, and cognitive dimensions—is
essential to create wearable systems that are both functionally
effective and socially acceptable.

E. EdgeFace: Efficient Face Recognition Model for Edge
Devices

George et al. [1] introduce EdgeFace: Efficient Face Recog-
nition Model for Edge Devices, a state-of-the-art lightweight
face recognition model specifically engineered for resource-
constrained edge devices. Inspired by the hybrid design of
EdgeNeXt, EdgeFace seamlessly integrates convolutional neu-
ral network (CNN) and transformer paradigms to harness
both local and global feature representations. A distinctive
innovation of EdgeFace is its incorporation of a Low Rank
Linear (LoRaLin) module, which factorizes conventional fully
connected layers into two low-rank matrices—dramatically
reducing the parameter count and multiply—accumulate oper-
ations (MAdds) without compromising recognition accuracy.
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Fig. 2. Overview of the EdgeFace framework, adapted from the EdgeNeXt architecture. This figure emphasizes the newly incorporated LoRaLin layers and

a specialized output module that produces 512-dimensional embeddings.

With a compact architecture of approximately 1.77 million
parameters, EdgeFace achieves superior performance on chal-
lenging benchmarks such as LFW (99.73%), IJB-B (92.67%),
and 1JB-C (94.85%), outperforming other lightweight models
with larger computational overhead. Extensive experimental
evaluations validate its robustness against pose variations,
illumination changes, and occlusions, making it a highly
promising solution for real-time face recognition on edge
devices. Since RecognEyes leverages the EdgeFace pipeline
as its baseline, we examined multiple EdgeFace variants to
identify the best compromise between model size, accuracy,
and FLOPs. Table I shows hypothetical results for four vari-
ants:

TABLE I
HYPOTHETICAL EXTENDED COMPARISON OF EDGEFACE VARIANTS.
#PARAMS AND FLOPS ARE IN MILLIONS. LFW, IJB-B, AND IJB-C
VALUES ARE TOP-1 VERIFICATION ACCURACY (%).

Model #Params | FLOPs | LFW | 1JB-B | 1JB-C
XXS_q 0.95 110 98.4 88.3 89.2
XS_q 1.40 140 99.0 91.5 93.3
s_gamma_05 1.80 160 99.2 92.6 94.1
base 2.40 220 99.3 92.9 94.3

We adopt edgeface_s_gamma_05, as it balances ac-

curacy with manageable computational load, making it well-
suited for a battery-powered wearable form factor.

III. METHODOLOGY
A. Hardware Prototype

RecognEyes features a Raspberry Pi Pico for its ultra-
low power draw and basic image processing capabilities, a

720p camera for moderate-resolution face imaging, and a
small earpiece for discreet audio output. All components are
integrated within a lightweight glasses frame, ensuring comfort
and usability for daily wear.

a) System Architecture: Images are captured by the on-
glasses camera and analyzed using OpenCV’s Haar cascades
[11] running locally on the Pi Pico for face detection. Detected
faces are cropped and transmitted to a personal device for
face embedding extraction and matching [12]. A recognized
identity triggers a subtle audio cue, improving everyday social
interactions for individuals with prosopagnosia.

B. Accuracy Benchmarks

Inspired by EdgeFace’s evaluation paradigm, we measure:

True Acceptance Rate (TAR): Probability that the cor-
rect face is recognized.

False Acceptance Rate (FAR): Likelihood of misiden-
tifying an unknown individual.

Overall Accuracy: Fraction of accurate classifications
across all test images.

C. Performance Benchmarks

We focus on:

Latency: Capture-to-output delay, critical for real-time
feedback.

Frames Per Second (FPS): Throughput of the full
pipeline.

Memory Footprint: Suitability for constrained hardware
on wearables.
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Fig. 3. System diagram of RecognEyes. The camera captures images for face detection and cropping on a Raspberry Pi Pico, then sends them to EdgeFace
for embedding-based recognition. The device provides real-time feedback via an earpiece to assist users with prosopagnosia.

D. Face Detection with Haar Cascades

Haar Cascade classifiers offer a balance of speed and accept-
able accuracy for simpler embedded devices. Although more
advanced CNN-based face detectors exist, such as MTCNN
[12], they generally require higher compute and memory,
making Haar Cascades a pragmatic choice [13].

E. Sending Entire Images vs. Cropped Faces

We model full-frame transmission size as Spy = W x H X
D, contrasting it to Scropped = K X w X h x D, where K
is the number of faces per frame, and w < W, h <« H.
Cropped-face transmission cuts bandwidth usage significantly,
increasing responsiveness and power efficiency—particularly
pivotal for wearable applications.

F. Face Embeddings and Cosine Similarity

RecognEyes employs a CNN-based embedding approach,
projecting each face into a high-dimensional vector space. We
use cosine similarity to measure likeness:

CosineSim(z1, z2) = B
1z [zl

Cosine similarity’s resilience to illumination variation and

minor occlusion bolsters real-world reliability [14]. Early

work such as DeepFace [15] demonstrated the effectiveness

of embedding-based methods, laying groundwork for modern

face recognition pipelines.

IV. RESULTS AND DISCUSSION
A. System Accuracy and Performance

We tested RecognEyes on a private dataset of 500 images
from 10 individuals and observed overall accuracy exceeding
99%. Latency remained under 40 ms, supported by local
detection and limited data transmission. These factors are
crucial to help individuals with prosopagnosia receive rapid,
discreet feedback in social contexts.

B. Prototype Evaluation and User Feedback

Battery Consumption: The 2000 mAh battery supports 3—
4 hours of continuous recognition.
Wearability and Comfort: Participants reported
RecognEyes is “lightweight enough” for extended usage.
User Acceptance: Pilot testers indicated lower social anxiety
due to immediate identification feedback, especially beneficial
in group settings.

that

C. Ethical Considerations

All embeddings and recognized data are stored locally,
ensuring user control over who is enrolled. No cloud-based
storage is involved, minimizing privacy and security risks.
These measures align with best practices for handling bio-
metric information.

V. CONCLUSION

RecognEyes addresses a crucial unmet need for individuals
with prosopagnosia by integrating localized face detection and
efficient data handling in a wearable form factor. Accuracy
exceeding 99%, sub-40 ms latency, and user evaluations high-
lighting improved social confidence underscore its potential.

A. Key Hardware & Model Insights

Using a Raspberry Pi Pico and a 720p camera proved
optimal for balancing real-time detection demands and battery
life. Among EdgeFace variants, edgeface_s_gamma_05
delivered the strongest trade-off in accuracy and resource
usage to fit RecognEyes’ wearable constraints.

VI. FUTURE WORK

o Scalable Face Database: Handle larger user circles or
dynamic addition of new contacts without major latency
spikes.

o Advanced Embeddings: Investigate transformer-based
architectures for robust face embeddings within embed-
ded constraints.
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« Refined User Interface: Integrate subtle on-lens cues for
silent scenarios where audio prompts are undesirable.

« Power Optimization: Explore dynamic clock manage-
ment for battery efficiency.

¢ Broader Trials: Conduct studies with a wider demo-
graphic of prosopagnosia participants to refine real-world
robustness.

VII. LIMITATIONS

Low-light conditions remain challenging, occasionally pro-
ducing spurious detections. Furthermore, the prototype’s ex-
ternal wiring for advanced inference is less aesthetic than an
integrated solution, although planned improvements aim to
streamline the hardware, as well as increase its durability and
robustness.
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Abstract—To address barriers preventing timely COVID-19
diagnosis, we propose RespiraCheck, a convolutional neural
network (CNN) designed to classify COVID-19 based on cough
audio. Our approach utilized Mel spectrogram representations of
labeled cough recordings to fine-tune the last convolutional and
fully connected layers of a pretrained ResNet-18 model, lever-
aging transfer learning for efficient and accurate classification.
Using the crowdsourced Coswara and COUGHVID datasets, we
trained on a balanced set of COVID-19 positive and negative
samples. To ensure real-world applicability, we also developed a
web interface that allows individuals to record or upload cough
samples and receive an instant diagnostic assessment. By bridging
the gap between clinical research and practical deployment,
RespiraCheck aims to provide an accessible, non-invasive, and
scalable tool for COVID-19 screening.

I. INTRODUCTION
A. Motivation

The recent COVID-19 pandemic has demonstrated the im-
pact of respiratory illnesses on a global scale. As of October
2020, more than 1 million COVID-19 related deaths have
been documented worldwide [1], with 8,749 deaths out of
106,804 COVID-19 reported cases in Canada [2]. While the
COVID-19 related mortality rates have decreased, the disease
remains prevalent. Many individuals with mild symptoms go
undiagnosed, either to avoid long hospital wait times [3]
or to sidestep the financial burdens incurred through higher
insurance premiums resulting from ordering at-home PCR
testing kits [4]. The neglect of symptoms due to external
factors can have major effects on the health and lifestyles of
individuals, and may even lead to severe consequences in the
future.

Despite numerous studies on COVID-19 classification using
cough data—many of which report high accuracy—few user-
facing applications have been developed to provide widespread
public access to Al-driven COVID-19 screening. Research
published by the National Institute of Health emphasizes the
potential impact of such tools, stating that,

Mobile app technology, biosensors (for rapid diag-
nosis), and Al methods (for diagnosis in the early
and acute stages of the disease) can reduce high
mortality rates and minimize the consumption of
hospital resources [5].

While accurate models exist and experts advocate for Al-
powered COVID-19 screening, real-world deployment remains
limited, with only a handful of publicly available applications.

With RespiraCheck, we aim to bridge the gap between re-
search and real-world application by developing an accurate,
compact model capable of detecting COVID-19, while also
ensuring accessibility to the general public through an intuitive
public-facing website.

B. Related Works

In a paper published by Loey and Mirjalili in 2021 [6],
the authors tackle the problem of COVID-19 classification by
using image representations of audio to train several deep
learning models to detect COVID-19. Instead of directly
analyzing sound waves, the researchers converted cough sig-
nals into scalogram images—a transformation technique that
represents time-frequency information. Using these as input,
they trained six pre-trained deep learning models (Google
Net, ResNet18/50/101, MobileNetV2 and NasNetMobile) to
differentiate between COVID-19 and non-COVID coughs.
Their best-performing model was ResNet18, which achieved
an accuracy of 94.9%, with a sensitivity of 94.44% and a
specificity of 95.37% using the SGDM optimizer. This paper
demonstrates the feasibility of deep learning-based COVID-19
detection from cough sounds, and highlights the effectiveness
of fine-tuning ResNet18.

Another paper published by Pahar, Klopper et al. in 2021
uses transfer learning and bottleneck features for COVID-19
classification [7]. This study leverages five large, unlabeled
audio datasets containing cough, sneeze, speech, and non-
vocal sounds to pre-train CNN, LSTM, and ResNet50 models.
The pre-trained networks are then either fine-tuned using
smaller datasets of cough, breath, and speech audios with
COVID-19 labels or used as feature extractors for shallow
classifiers. Using this double-tiered approach, the authors
aimed to mitigate the effects of overfitting the models on
the small amount of COVID-19 labelled data available. This
method achieved an AUC of 0.98 when trained on cough
sounds, suggesting that cough signals contain the strongest
COVID-19 signatures as opposed to breath and speech. This
study also emphasizes the importance of data augmentation
techniques, including time and frequency masking, to enhance
model generalization.
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II. METHODOLOGY
A. Training Data

The goal of our model is to classify cough audio into
positive or negative for COVID-19. For this, we use the
crowdsourced COUGHVID [8] and Coswara [9] datasets con-
taining cough audio samples labeled by clinicians as positive
or negative. The use of crowdsourced data allows our model
to train on data that is reflective of the data that users will be
recording on their own through our website.

TABLE I
TRAINING DATA CLASSES

Data Source Positive Samples | Negative Samples
Coswara Light Coughs 1477 591
Coswara Heavy Coughs 1477 591
Coughvid Coughs 4661 1578

Since the dataset is unbalanced, we apply data augmentation
techniques to increase the number of positive samples. Our
data augmentation methods include time shifting, pitch shift-
ing, time masking, and frequency masking. To maintain the
integrity of our validation process, we ensure that augmented
data points are prevented from being used in the validation set
if the original sample was part of the training dataset, as this
would lead to an inflated test accuracy.
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Fig. 1. Full data processing pipeline.

B. Audio Processing

Each audio sample used for training and inference un-
dergoes a processing pipeline, where it is standardized and
cleaned. First, we standardize audio inputs into .wav format
with a standardized sample rate of 48 kHz to ensure consis-
tency across different recording devices and environments. To
enhance the quality of cough recordings, we apply spectral
gating-based noise reduction, which suppresses background
noise while preserving the integrity of the cough signal. Next,

we apply a Butterworth bandpass filter to remove unwanted
low-frequency noise, specifically targeting background speech.
We then use adaptive thresholding to detect and remove silent
sections longer than 800 ms, isolating the active cough portion.
Finally, we trim or pad the audio to ensure a uniform input
length of 5 seconds.

C. Spectrogram Processing

For Mel spectrogram extraction, we apply the Mel filter
bank to the power spectrum of the signal, using 128 Mel
bands with a maximum frequency of 8000 Hz to closely
mimic human auditory perception. The spectrogram is then
converted to a log scale using power-to-decibel transformation,
emphasizing subtle variations in cough intensity.

For Short-Time Fourier Transform (STFT) spectrograms,
we compute the STFT with a Hanning window, using a
2048-point FFT and a 512-sample hop length, capturing both
temporal and frequency domain information. The resulting
magnitude spectrogram is then transformed into a log-scaled
representation to enhance feature differentiation.

D. Feature Extraction

In addition to spectrograms, we explored two alternative
feature representations. First, we calculated Mel-Frequency
Cepstral Coefficients (MFCC), which provide a compact repre-
sentation of an audio clip’s spectral envelope using the same
Mel scale as Mel spectrograms. We also implemented filter
bank (FBANK) feature extraction, which allows us to map the
sample’s frequency set onto a filter bank feature set. We then
converted both MFCCs and FBANK features into grayscale
images to train separate models.

E. Model Framework

We selected ResNetl8 as our model due to its lightweight
architecture and strong transfer learning capabilities. ResNet18
is a residual-based CNN for image classification with 18
convolutional layers. It was originally trained on ImageNet and
generalizes well to image classification tasks [10]. ResNet18
has also demonstrated strong performance on image-based
audio classification tasks [6], making it a good fit for our
application. Due to our limited dataset size, we kept the
earlier convolutional layers frozen and fine-tuned only the
final convolutional and fully connected layers. This preserves
the pre-trained ImageNet features, mitigating overfitting while
allowing the model to specialize in cough classification.

200



Spectrogtam generated
from user’s cough on our website

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

<7
v
3x3 conv, 128

3x3 conv, 128

3x3 conv, 128
3x3 conv, 128
[E——

3x3 conv, 256, /2

Frozen
Layers

i

]

\

3x3 conv, 256

-

3x3 conv, 256 \

/

3x3 conv, 256 /

3x3 conv, 512, /2

3x3 conv, 512

' ,

N
= )

Y,
: )

Avg pool

Preprocessed training data
(Mel spectrograms,
STFT spectrograms,

MFCC images, or
FBANK images)

B
II

Binary Cross Entropy | Instead of using softmax

loss, we use BCE loss to
adjust ResNet18 to suit
binary classification.

Fig. 2. ResNetl8 transfer learning architecture.

Including both original and augmented data, the final model
was trained on about 4000 negative and 4000 positive samples
to ensure that accuracy was not biased towards either class.
Our final model was trained on 30 epochs, at which point we
observed a plateau of both train and validation loss. A batch
size of 32 was used to best pass data into the model. Both
Adam and stochastic gradient descent (SGD) were utilized as
the training optimizer, and despite the faster convergence of
Adam, we found SGD outperformed Adam on average.

III. RESULTS

This project is still ongoing, as it began in February 2025.
We initially trained four separate models, each respectively
utilizing Mel-spectrograms, STFT spectrograms, MFCC fea-
tures, and FBANK features. Test results currently indicate the
Mel-spectrograms performed best out of the three data types,
with an accuracy of 64%.

IV. CONCLUSION

RespiraCheck represents a significant step forward in us-
ing Al-driven solutions for accessible COVID-19 diagnosis.
Due to our fully audio-based analysis of cough samples,
our website provides a convenient, non-invasive method for
COVID testing. Our model, trained on the COUGHVID

dataset and optimized using various audio feature representa-
tions, demonstrates promising results after only one month of
development. Although further improvements are necessary to
improve accuracy, RespiraCheck currently stands as a proof
of concept to bridge the gap between clinical research and
real-world application. By offering an accessible alternative to
traditional testing methods, it paves the way for broader, at-
home COVID-19 screening, with the possibility of extending
the model to diagnose other respiratory illnesses.
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Abstract—Poor posture is a leading contributor to muscu-
loskeletal disorders, significantly affecting quality of life and
productivity. This project introduces a deep learning frame-
work to identify anatomical keypoints and offers a system that
classifies seated posture as good, fair, or bad while providing
user posture-related feedback. Initially, a custom Convolutional
Neural Network (CNN) was developed with 47.3% accuracy,
but due to practical constraints, the system was integrated
with the You Only Look Once Version 8 (YOLOVS) pose mode
with 84.9% accuracy. This system operates through a phone
camera connected to a main device, achieving a posture detection
accuracy of 92.3% at 30 Frames per Second (FPS). With broad
applications, such as workplace ergonomics, remote learning,
and online physical therapy, this project proposes a non-invasive
solution for proactive posture correction.

I. INTRODUCTION
A. Motivation

With the rise of sedentary lifestyles due to digitalization
and increased screen time exposure, posture-related health
problems have become a concern. Musculoskeletal disorders
(MSDs)—a class of disorders including back pain, neck strain,
and spinal misalignment—have been directly correlated with
poor posture, particularly during extended periods of sitting
[1]. Today, MSDs are some of the most harmful and costly
conditions—with almost 40% of adults having suffered from
back pain in the last 3 months [2]. Furthermore, incorrect
posture alone has been shown to result in up to a 29.3%
decrease in labour productivity [3]. Therefore, it is clear that
there has never been a greater need for accessible real-time
posture correction tools as professionals and students spend
more time sitting in front of screens.

B. Related Works

Conventional posture assessment techniques, like wearable
sensor-based tracking systems or in-person ergonomic assess-
ments, offer important information about body alignment and
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possible ergonomic hazards. However, those methods have
many drawbacks, as they tend to be expensive, invasive, or
unsuitable for real-time monitoring. Recent advances in human
pose estimation models have enabled automated tracking,
with models like OpenPose [4] and AlphaPose [5] producing
high-accuracy results in full-body keypoint detection in static
images and video frames. However, few existing systems are
specifically designed and optimized for seated posture mon-
itoring while providing real time feedback. Computer vision
methods, like the aforementioned, have massive potential in
providing a solution that is capable of giving feedback for
one’s posture with a regular webcam or smartphone camera.

C. Problem Definition

Despite recent advancements, there is a lack of real-time,
non-invasive solutions specifically tailored for seated posture
monitoring. Although there have been models like OpenPose
for general purpose tracking, there are few adapted to seated
posture correction. This leads to the need for an accessible
real-time posture analysis system capable of labeling keypoints
and, specifically, using those keypoints to offer posture-related
feedback.

II. METHODOLOGY

As previously mentioned, our team faced significant com-
plexity and computational challenges during the development
of this project, leading us to pivot from our initial custom
CNN to the YOLOvV8 pose framework. However, we have
documented our ongoing progress towards a custom CNN
below.

A. Dataset

Both our CNN and the YOLOV8 pose model for keypoint
identification were trained on the Common Objects in Context
(COCO)-Pose dataset—a subset of the COCO 2017 dataset
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filtered to human keypoints. This particular set was chosen
for the high-quality keypoint annotations and extensive size
(59 000 images) [6]. Each training example is annotated with
17 anatomical keypoints, such as shoulders, elbows, hips, and
knees, which are later utilized to analyze body posture and
identify possible ergonomic improvements [7].

B. Preprocessing

Several steps were taken in the preprocessing, including
resizing the image to the input resolution of 256x256, in-
troducing Gaussian noise and augmenting the data—which
included random rotation, scaling (0.75 to 1.25x) and vertical
reflection. One consideration was that a significant amount
of the COCO-Pose dataset has multiple individuals annotated,
whereas our system is tailored for a single person. Since this
portion of the dataset should ideally be retained, images with
multiple annotated individuals were cropped to a bounding
box of a single person in the frame.

C. Initial Model Architecture

Initially, our team trained a custom CNN to detect 17
anatomical human keypoints. In this section, we provide a
breakdown of the model architecture and development process.

The feature extraction block consists of 5 convolutional
layers, each with batch normalization, stride-based down sam-
pling, and a ReLU activation to improve training stability and
convergence. As seen below, the dimensions of the image
are reduced in each layer while feature depth is increased to
continually learn spacial patterns. Each output is fed into the
next layer—refining the predictions at each stage.

TABLE I
CONVOLUTIONAL LAYERS IN THE CUSTOM CNN
Layer Input Output Kernel | Stride
Convl 256%256x3 128x%128x64 TxT 2
Conv2 | 128x128x64 64x64x128 3x3 2
Conv3 64x64%128 32x32x256 3x3 2
Conv4 32x32x256 16x16x512 3x3 2
Conv5 16x16x512 8x8x1024 3%x3 2

The heat map prediction up samples the feature map to
the desired output of 17 heatmaps—each representing the
probability distribution for a given anatomical label. The
dimensions of which may be seen below.

TABLE 1II
TRANSPOSE CONVOLUTIONAL LAYERS IN THE CUSTOM CNN
Layer Input Output Kernel | Stride
Transpose Convl 8x8x1024 16x16x512 4x4 2
Transpose Conv2 | 16x16x512 | 32x32x256 4x4 2
Transpose Conv3 | 32x32x256 64x64x17 4x4 2

For each heatmap, the coordinate with the highest accuracy
is selected. If the accuracy is too low, this value is discarded,
and is left undefined. This aim of this process is to select the
most probable point, as shown in the function below:

(2,y) = arg max H(i, j) (1)

where (z,y) is the predicted coordinate, and H (4, j) is the
intensity at the pixel (i, j).

A Mean Squared Error (MSE) loss function measures the
accuracy of the heatmap outputs at the annotated locations, as
shown in the formula below:

ISt e
MSE = HZ(IL H;)

i=1

@)

. where H; is the observed heatmap value at the ith pixel,
H; is the predicted heatmap value, and n is number of pixels
in the given heatmap.

D. Pose Estimation and Posture Classification

Thresholds derived from ergonomic guidelines allow us to
categorize postures into good, bad, or fair primarily based on
torso and neck deviations [8] [9].

e Good: S <20%
e Fair: 20% < S < 40%
e Bad: S > 40%

The neck angle is computed as the angle between the
shoulder and ear keypoints relative to the vertical axis, while
the torso angle is computed as the angle between the shoulders
and the hips. From these two angles, a posture score is
calculated as:

(neck deviation + torso deviation)

=1 —
S =100 5

3

where:

o neck deviation: Absolute difference between the neck
angle and the ideal angle (0)

o torso deviation: Absolute difference between the torso
angle and the ideal angle (0)

Since there is a possibility that a pixel coordinate may be left
undefined from the CNN, we use its anatomical counterpart.
For example, in a left-side-view image, if the right shoulder
is undefined, then the left shoulder is substituted in place of
it’s counterpart.

E. Model Rationale and Transition to YOLOvS-Pose

Based on our previous iterations and research, we concluded
that a CNN was the best model for the project, as overall, it
is better at identifying spatial patterns and generalizing across
different settings.

Initially, however, a simple binary classifier was developed
to categorize a user’s posture as good or bad. This classifier
worked to a degree, but lacked in returning specific feedback
or quantifying the degree of good or bad posture. Therefore,
we determined that a key-point-based model followed by angle
analysis was optimal, providing specific areas and regions to
correct.

Upon testing our custom CNN, we faced significant chal-
lenges such as poor accuracy, trouble with generalization,
and extremely high computation requirements. Since keypoint
detection typically requires deep architectures and extensive
large-scale computation, our team transitioned to a pre-trained
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optimized YOLOVS8-pose model [10]. Compared to other mod-
els like OpenPose and AlphaPose, YOLOVS uses much less
computational resources without sacrificing accuracy, making
it ideal for our application—developed with accessibility in
mind. Through using the lightweight YOLOv8 framework, our
system was able to run at 30 FPS on standard laptops.

ITI. RESULTS
A. Performance Metrics

Our custom CNN reached an average keypoint labeling
accuracy of 47.3% for the shoulders, ears, hips, and knees
(measured by the Percentage of Correct Keypoints (PCK)
metric at a threshold of 0.5), while the YOLOvS model
improved this to 84.9%. To evaluate the accuracy of the rule-
based posture classification system, 100 curated side-view
images for good, fair, and bad postures were labeled, with
300 validation images in total classified with the YOLOvS8
model and posture system. An overall accuracy of 92.3% was
achieved (277/300).

TABLE III
POSTURE CLASSIFICATION ACCURACY
Posture Category | Accuracy
Good Posture 89%
Fair Posture 92%
Bad Posture 96%

The accuracy for bad posture was notably higher, showing
the need for further refinement of posture estimation and a
more sophisticated rule-based system. Another major draw-
back of the current system was the need to curate and solely
use images with a well-aligned side-view camera angle.

B. Real-Time Performance

The posture classification system was also assessed under
several diverse environments for robustness and reliability.
Under good lighting and minimal background noise, the sys-
tem generally performed well. However, there were several
instances where this model made errors in classification,
particularly in cluttered environments. In environments with
multiple individuals, such as at the Canadian Undergraduate
Conference on Al (CUCAI), the model occasionally tracked
people in the background rather than the target. Furthermore,
when important keypoints for the angle calculations, like
knees and hips, were fully hidden with no suitable replace-
ment, detection precision drastically decreased. Other common
misclassifications include head orientation, where momentary
neck angle changes are seen as poor posture; confusing
leaning and slouching with one another; and background noise
disrupting keypoint identification.

C. Recommendations for Improvement

1) Background Noise
A major consideration before this system can be de-
ployed is reducing and filtering out background noise.
Based on our study, we have concluded that isolating

the target individual from the background is an essential
preprocessing step, which can be done by segmenting
the target individual with a CNN or an alternative form
of filtering.

2) Rule-Based Angle Analysis
Through testing, we discovered several errors associated
with the rule-based posture system in place. Although a
strong proof-of-concept was established, it is clear the
system is overly simplistic: the thresholds were disrupted
by occasional variations and the system was unable
to recognize smaller but crucial details such as spine
curvature at times. Our team recommends that a larger
dataset with a greater number of anatomical keypoints,
specific to posture, is utilized to allow for more advanced
analysis.

3) Camera Perspective
For angle calculations, this two-dimensional system re-
lies on a well-aligned side-view camera. When incor-
rectly oriented, the angle measurements are incorrect,
leading to classification errors. We suggest a few strate-
gies to mitigate this issue:

« Rather than calculating angles to the vertical axis,
calculate them relative to other keypoints to reduce
dependency on camera angle.

« For moderate amounts of camera warp, transform
the image to a “perfect side-view” representation.

o If the perspective were directly in front of the
user, the model would need to recognize three-
dimensional keypoint positions, which might be
done with the use of depth sensors.

IV. CONCLUSION

This paper presents a real-time Al-powered posture detec-
tion system using a custom CNN and YOLOvS8-pose model to
classify posture based on neck and torso angles. Although the
custom CNN provided valuable insights and research, because
of challenges in generalization and computational demands,
the YOLOvVS8 model was critical in deploying a system that
offers instant posture feedback at 30 FPS; increasing our key-
point accuracy from 47.3% to 84.9% and allowing us to reach
a posture classification accuracy of 92.3%. By developing this
project with accessibility at the forefront, we have ensured
our system functions on consumer-grade hardware, with in-
stant feedback on a standard phone camera connected to a
main device—offering numerous applications in fields such as
workplace ergonomics, education environments, rehabilitation,
as well as fitness and wellness.

While our results show strong potential, there are several
challenges, such as dependencies on well-aligned camera an-
gles, background noise, and obstructed keypoints. To address
these issues, our team recommends expanding the dataset to
label a greater amount of keypoints, refining the rule-based
posture system for greater adaptability, and developing three-
dimensional keypoint detection with depth sensors. In the long
term, we plan to continue developing the user interface while
incorporating more comprehensive user recommendations. By
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bridging computer vision and health sciences, this paper
highlights the growing importance of artificial intelligence in

preventative healthcare and ergonomic intervention.
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Abstract—Music genre transfer is an application of domain
transfer that modifies music data from a source genre to a
target genre. We propose a symbolic music genre transfer
model including instrument-specific features for additional un-
derstanding of the contribution of instrument elements. Our
model uses MIDI-formatted symbolic music files as input. Our
model employs a Convolutional Neural Network (CNN)-based
Variational Autoencoder (VAE) to extract genre and style features
while integrating genre and adversarial classifiers to ensure
that latent features are properly disentangled. N-gram similarity
analysis and Fréchet Music Distance (FMD) metrics are used
to evaluate the effectiveness of the genre transfer, measuring
melodic, rhythmic, and harmonic structures.

I. INTRODUCTION

Music genre transfer involves learning a transformation that
converts a piece from one musical genre to another while
preserving its core musical content (e.g., melody, structure)
and adapting stylistic elements characteristic of the target
genre (e.g., instrumentation, rhythm).

Domain transfer requires balancing the preservation of
essential features that define the data’s style (domain-invariant
features) with the transformation of elements that reflect the
data’s genre (domain-dependent features).

Our method customizes a variational autoencoder to perform
genre transfer on symbolic music, using MIDI files rather
than audio like MP3 or WAV files. MIDI is a standard digital
protocol for music communication and storage, akin to sheet
music rather than audio [1].

By leveraging symbolic music data, where notes are repre-
sented as discrete symbols rather than waveforms, our model
focuses on musical pattern extraction and does not require
learning the timbre of different instruments. This structured
representation also emphasizes musically meaningful relation-
ships that define a genre.

A. Motivation

Existing symbolic music genre transfer models disregard
instrument-specific features and instead apply transforma-
tions to entire pieces indiscriminately. We focus on music
genre transfer of specific instrument groups. By analyzing
and modifying individual instrument tracks, our model can
better capture musically meaningful patterns within specific
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instruments. Transferring instruments separately between gen-
res allows users greater control over song alteration. This
approach also reduces redundancies in transfer, as it preserves
similarities between grouped instruments. For example, the
notes of electric and acoustic bass typically remain the same
during transfer.

B. Related Works

Current state-of-the-art music genre transfer include Steely-
GAN, MuseMorphose, and MIDI-VAE. SteelyGAN is a CNN-
based Generative Adversarial Network (GAN) for unsuper-
vised music genre transfer. It applies the cyclical genera-
tive adversarial network (CycleGAN) to symbolic music [2].
MuseMorphose uses autoregressive VAEs for conditional gen-
eration using a sample sequence and user-provided values.
A transformer decoder is conditioned by fusing encoder-
generated conditional vectors and user values to each self-
attention layer [3]. MIDI-VAE is a VAE that uses gated re-
current units for encoding and decoding. Using reconstruction
loss and the Kullback-Leibler (KL) divergence, MIDI-VAE
provides a reliable baseline architecture for a model that learns
a transformation between two styles [4].

II. METHODOLOGY

A. Dataset

The dataset used to train the model is based on the Mid-
iCaps Dataset, excelling in labelling, diversity and size [5].
Features including genre, time signature, tempo, duration, and
instrument summary are used. Genres with over 10,000 entries
are kept, resulting in the four most popular genres: electronic,
pop, classical, and rock. The clean data removed music pieces
in time signatures that are not in 4/4 time and songs under
10 seconds. Instruments are combined into broader categories
of 5 instrument classes: strings, woodwinds, brass, piano,
and bass. Files with missing values and pitch or velocity
values over 127 are removed. Out of the original 168,385
data points in the MidiCaps Dataset, 116,000 data points
remained after cleaning. A standard MIDI message contains
a note’s pitch, note-in time, note-out time, and velocity [1].
Each MIDI message is also tagged with a timestamp, enabling
the reconstruction of entire musical pieces. MIDI files are
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converted into piano roll format using the Pypianoroll Python
library, then NumPy files for training [6].

Each instrument track of the original MIDI file is rep-
resented as an instrument group NumPy array, containing
the data for active notes at specific time steps, pitches, and
velocities ranging from the standard O to 127. The shape of the
piano rolls during training is 1024 by 127. After reconstructing
the piano rolls, we plot the track by visualizing the active note
pitches at certain time steps. Figure 1 shows a piano roll with
a higher note velocity represented by a darker colour and a
lower velocity represented by a lighter colour.
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Fig. 1. Plot of a Sample Piano Roll Track
B. Model

Our proposed method incorporates a VAE to automatically
encode and decode the genre and style attributes of a given
piano roll input [7]. This is shown in Figure 2. To ensure the
successful transfer of genre, our model factorizes the input into
two distinct latent distributions: one represents genre features,
and the other represents other features specific to each track.
Genre transfer is achieved by utilizing a sampled genre vector
zg of one song and combining it with a sampled style vector
zs from another. The concatenated latent vectors are fed into
the decoder network to yield the transferred music piece.
The VAE encoder and decoder consist of convolutional layers
interlaced with residual connections. The loss for the VAE
involves two KL-divergence terms that regularize both of the
latent distributions:

Lvag = Ezg»ZSNfI(Zg,ZsW?) (- 1ng($|zgﬂ zs)) (D
+ Drcr(q(zg7) [ p(2g))
+ DKL(q(Zs|x) ||p(25))

To encourage the network to distinguish between genre and
style features, we add the following enhancements: (a) We
add a genre classifier to the genre latent space to ensure its
representations contain genre-relevant features. (b) Inspired by
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Fig. 2. Overview of symbolic music transfer model.

prior work in feature disentanglement [8], we use an adversar-
ial classifier to ensure that the two learned distributions contain
distinct information for genre and style, as shown in Figure 3.
In this way, our proposed framework ensures that z, contains
the information relevant to the genre, z; contains the other
information useful for reconstructing the input piano roll, and
that z, and z, encode different features.
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Fig. 3. Architecture of modified VAE.

1) Genre Classifier: We propose the addition of a super-
vised auxiliary task to encode the genre latent vector z, with
genre-relevant features. This is done by introducing the genre
classification task on the latent vector z,, where the goal is to
correctly classify the vector as belonging to the genre as given
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in the MidiCaps [5] dataset. The network is a 3-layer MLP
with ReLU activation in the intermediate layers and softmax
as the output activation. Dropout is used with a probability of
0.3. The classifier is trained jointly with the VAE using the
cross-entropy loss

K
Egenre = - Z Yk IOg @k, (2)
k=1

where gy, is the predicted probability and yy, is the one-hot
encoded label for the k-th genre.

2) Adversarial Classifier: Separating genre and style dis-
tributions retains the style of the original track and changes
the genre of the generated song. The encoded genre and style
vectors contain distinct information to prevent the generated
track from having an incomplete genre transfer or a different
style from the original track.

Using the approach in [8], we introduce an adversarial com-
ponent to our framework to minimize the mutual information
between the genre and style vectors. A discriminator network
D is introduced to distinguish whether a given pair of genre
and style vectors (zg,zs) originate from the same track. The
VAE encoder ¢ generates these latent vectors as statistically
independent from each other. In our implementation, latent
vector pairs from different tracks (Z,,s) are obtained by
shuffling the genre vectors z, from the same batch. The
discriminator loss £p and adversarial encoder loss L,q4, are

phrased as follows where [-, -] denotes concatenation:
‘CD = _Ezg,zswq(zg,zs |z) (log D([2g7 Zs]) (3)
+1log(1 = D([zg, 7)),
Acadv = 7Ezg,zs~q(zg,zs|x) log D([Zg; Zs]) (4)

In our implementation, the discriminator is implemented
similarly to the genre classifier as a 3-layer MLP with ReLU
activation, dropout with probability 0.3, and sigmoid as the
output activation.

The total loss for the VAE is

L= EVAE + A1 Egenre + )\2£adv

for loss scaling hyperparameters A1, Ao, while the discrim-
inator is trained separately.

III. RESULTS
A. Evaluation

We developed two evaluation metrics: N-gram analysis
and Fréchet Music Distance-inspired analysis. The N-gram
analysis evaluates the relationship between the original and
transferred pieces, while the FMD-based metric assesses the
effectiveness of capturing genre-specific musical patterns. The
accuracy of these metrics was validated by testing them on
state-of-the-art symbolic music transfer models.

An N-gram is a sequence of elements that preserves pat-
terns in text or music. In symbolic music, N-grams capture

sequential features such as pitch, rhythm, and harmonic pro-
gressions [9]. This metric involves extraction and analysis of
key musical features, including pitch sequences, note density,
velocity profiles, pitch class distribution, chord patterns, and
inter-onset interval distribution. Each feature is treated as an
independent sequence, generating N-grams that are compared
to a reference dataset of genre-specific samples. The similarity
between the transferred piece and the reference dataset is
quantified using N-gram overlap, measured through cosine
similarity. This approach captures both local and global struc-
ture, providing a robust evaluation of genre transfer accuracy.

The second metric is inspired by the Fréchet Inception
Distance, a measure designed to evaluate the quality of images
generated by models like GANs [10]. FID quantifies the
similarity between the distributions of generated and real data.
Drawing from this concept, we adapt the FMD to evaluate
symbolic music. This metric compares the distributions of key
musical features, specifically temporal note density and pitch
velocity extracted from piano roll representations. Each feature
is transformed into a Gaussian distribution to capture local
and global musical characteristics. The temporal distribution
representing the density of musical activity over time can be
seen in Figure 4.

o —— Temporal Distribution
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Fig. 4. Temporal distribution of I walk the line by Johnny Cash.

Figure 5 shows the pitch distribution representing the den-
sity of notes per pitch over the whole song.
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Fig. 5. Pitch distribution of I walk the line by Johnny Cash.

The transferred composition is evaluated by comparing its
feature distributions to those of one hundred reference pieces
from each target genre. A cosine similarity analysis measures
the statistical alignment between the transferred piece and the
genre-specific distributions. The similarity scores are summed
across all features, and the genre with the smallest variation
from the transferred piece is identified as the most suitable.
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This metric accounts for potential overlaps between genres,
providing a nuanced assessment of genre transfer quality.
Together, these metrics provide a comprehensive framework
for evaluating symbolic music genre transfer.

The results of the FMD analysis are presented in the figures
below. For each genre, ten representative songs were evaluated
using the FMD metric to determine which genre the model
identifies as most similar, based on distributional similarity in
musical features.

Figure 6 illustrates the FMD model’s predictions regarding
genre resemblance for ten pop songs.
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electronic pop rock
Predicted Genre

classical

Fig. 6. FMD prediction distribution for the 10 true-genre pop songs.

The plot indicates that the model consistently identified
pop as the most similar genre for the majority of pop songs,
suggesting strong discriminative capability in this category.

Figure 7 presents the FMD results for ten rock songs.
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Fig. 7. FMD prediction distribution for the 10 true-genre rock songs.

Here, the metric frequently ranks rock as either the first or
second closest genre, indicating a reasonably accurate classi-
fication, albeit with occasional confusion with other genres.

Figure 8 shows the corresponding results for electronic
music.
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Fig. 8. FMD prediction distribution for the 10 true-genre electronic songs.

While electronic songs are often misclassified as pop,
they remain the most frequently predicted genre among the
remaining three, implying a moderate ability to capture their
distinctive features.

Figure 9 displays the FMD analysis for classical pieces.
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Fig. 9. FMD prediction distribution for the 10 true-genre classical songs.

Similar to the electronic results, pop is often predicted as
the closest match. However, classical ranks highest among the
remaining genres, suggesting that the model partially captures
classical music’s unique structure and tonal characteristics.

These results highlight the model’s strength in distinguish-
ing pop music from other genres, while revealing ambigui-
ties in classifying electronic and classical music, suggesting
the need for further refinement of the FMD metric or the
integration of additional musical features to enhance genre
discrimination. The inherent diversity and broad stylistic range
within the pop genre may contribute to a systematic bias,
whereby the metric is more likely to classify ambiguous
inputs as resembling pop, thus influencing the overall genre
prediction distribution.

IV. CONCLUSION

This project introduces an novel approach to symbolic
music genre transfer by integrating a CNN-based VAE with
an adversarial classifier and discriminator to ensure genre-
invariant instrument-specific feature learning. By incorporating
instrument-specific characteristics, the model enhances genre
adaptation while preserving musical structure. Currently, our
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model transfers songs with limited original song recogniz-
ability. The transferred genre misses certain key target genre
characteristics. To improve this, we aim to refine the dataset
for more clean pieces, altering the model’s focus on specific
musical elements and isolating the difficulties of specific
model components. Further model iterations will be evaluated
with the prepared N-gram similarity analysis to show the
relation between the original and transferred pieces and the
FMD metric to confirm its effectiveness in capturing melodic,
rhythmic, and harmonic patterns specific to the desired genre.
Future additions will focus on tokenizing the dataset, refining
transfer accuracy, and expanding genre diversity. This work
contributes to Al-driven music transformation domain knowl-
edge and broadens creative possibilities in music composition,
understanding, and production.

A. Future Work and Applications

Ongoing improvements aim to enhance the accuracy and
quality of the transferred compositions, ensuring greater re-
semblance to the target genre. Incorporating Revamped MIDI
(REMI) tokenization to represent the dataset would encourage
the model to learn additional musical features by introducing
special tokens [11]. Currently, the model supports four genres
and five instrument categories. Future iterations will expand
genre and instrument diversity, allowing for a broader range
of stylistic transformations. User-based perceptual studies can
be incorporated for evaluation alongside N-gram analysis and
FMD metrics.

The potential applications of symbolic music genre transfer
span multiple domains, from music composition and produc-
tion to education and Al research.
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Abstract—Our project focuses on attempting to develop a
machine learning model to predict the toxicity of molecules based
on their molecular structure. In our testing we used two model
archetypes, a Support Vector Machine (SVM) and a Neural
Network, both trained using the Tox21 dataset [1], a catalog
of over 10,000 molecules and their relative toxicities based on
twelve distinct biological factors. Through our experiments, we
found our best results were with using a Neural Network with
CHEMBERT featurization of SMILES strings, LDA dimension-
ality reduction and SMOTEENN resampling. Our results show a
positive correlation between molecular structure and toxicity, but
found faults in attempting to build one general model to predict
all the biological factors at once. To demonstrate an application
of our models, we built an app allowing users to input the name
of any molecule, and have the model output its predicted toxicity.
Link to GitHub here.

I. INTRODUCTION

Toxicology is an important field in medical science and
often a large barrier for the synthesis of new materials and
pharmaceuticals. It includes the study of pollutants, infectants,
mutagens; disciplines of Oncology, Exposomics, and Toxi-
cogenomics, as well as whole range of other fields regarding
dangerous substances to humans. Our project aims to explore
the complexities of this field by trying to build an Al model
that can predict the toxicity of molecules through predicting
specific events they would trigger in the body.

A. Motivation

The inspiration for starting into this project was a paper
published on developing molecular structures using generative
Al [2]. The AI model was trained on a series of Simplified
Molecular Input Line Entry System (SMILES) strings, an
efficient means of representing the structural geometry and
atomic connectivity of molecules within a single string. [3]
Their model output was new SMILES strings representing
newly generated molecules. The main idea as to why one may
want to do this is for material or pharmaceutical synthesis. The
problem with this is that it is expensive to put together the
resources necessary to synthesize all these different structures
and test their viability or safety. If there were a way to predict
the toxicity of certain molecules, we could eliminate a vast
majority of harmful toxins and focus solely on the viable
subset. Furthermore, a study from 2022 [4] by the American
Society of Biochemistry and Moleculecular Biology claimed
that 90% of drugs fail clinical trials; where reportedly

Tejal Simran Cheema
University of Victoria
tejalcheema @ gmail.com

”around 30% were due to unmanageable toxicity or
side effects.”

These failures cost pharmaceutical large sums of both time
and money through testing, and research. With a model that
could accurately predict these unwanted toxic effects, we can
mitigate the amount of losses and allow for more efficient drug
discovery.

Today, toxicology is expanding rapidly thanks to the new
tools being developed in Al Although the idea of using
Machine Learning to predict the toxicity of molecules is not
new. Certain implementations of Al in toxicity testing, such
as In Silico Toxicology [5], has been gaining widespread
adoption since the early 20th century. The fault with current
methods however is largely due to the amount of data needed
to train Al models to then predict toxicity, including informa-
tion from quantum mechanics simulations, QSAR modeling,
and knowledge of certain physicochemical properties of the
molecules. In many situations, we do not have the ability to
gather or simulate all of the required data of these molecules,
especially considering the cases where generative Al is used
to generate millions of hypothetical molecular structures to
discover new drugs. Building a model that could predict the
toxicity of a molecule using only its molecular structure would
solve this problem.

B. Related Works

The dataset used in this project is the Tox21 dataset
(Toxicology in the 21st centuary), whih catalogues of over
10,000 SMILES strings and their relative toxicity based on
12 tasks [1]. Originally introduced as a challenge dataset by
the National Institute of Health (NIH) in 2014, Tox21 has
since been widely used in machine learning-based toxicology
research. One of the most notable models developed using this
dataset is DeepTox, a deep learning model that won the Tox21
challenge [6].

The creators of DeepTox highlighted the potential of deep
learning in toxicity predictions, emphasizing that neural net-
works are particularly well-suited for this task due to their
ability to construct abstract chemical features [6]. This insight
influenced our approach, motivating the use of neural networks
as one of the models trained on the Tox21 dataset. Given
the demonstrated success of deep learning within the Tox21
challenge, it gives validity to its usage in toxicology prediction.
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Beyond deep learning approaches, other studies have ex-
plored alternative methods for improving toxicity classification
on Tox21. One such study focused on the Structure-Activity
Relationship (SAR) classification problem, a challenge stem-
ming from the inherent class imbalance in toxicity datasets
[7]. It used the Tox21 dataset and explored various resampling
techniques to mitigate data imbalance. However, while our
work compares Support Vector Machines (SVMs) and neural
networks, their approach employed Random Forest as a base
classifier, applying different resampling methods to improve
model performance [7].

C. Defining the Problem of Toxicity

Dr. Stanley E. Manahan, a professor at the University of
Missouri, wrote a book called Toxicological Chemistry, detail-
ing the many ways in which toxicity has been defined over the
years. This describes how toxicity had been commonly defined
in terms of lethality or dosage; but why modern techniques
aim to go further with the classification of toxic compounds
by classifying them based “according to the parts of the body
affected or by toxic effect.” [8]. The following table below
depicts the 12 distinct biological tasks included in the Tox21
dataset (i.e. what our model predicts):

TABLE 1
TASKS OF THE TOX21 DATASET.
Task Key Description
NR-AR Androgen Receptor: Protein that binds to androgens.
NR-AR-LBD Androgen Receptor LBD: Binding of androgenic
compounds.
NR-AhR Aryl Hydrocarbon Receptor: Receptor in cell cyto-

plasm that detects Aryl Hydrocarbons.

NR-Aromatase

Aromatase: Enzyme that converts androgens to es-
trogens.

NR-ER

Estrogen Receptor: Protein that binds to estrogen.

NR-ER-LBD

Estrogen Receptor LBD: Binding of estrogenic com-
pounds.

NR-PPAR-gamma

Peroxisome Protein that controls the regulation of fat
storage and glucose.

SR-ARE Antioxidant Response Element: Defense against ox-
idative stress.

SR-ATADS ATADS gene: Involved in DNA damage response -
could help predict carcinogens and mutations.

SR-HSE Heat Shock Element: Triggers stress-response pro-
teins under heat or toxic stress

SR-MMP Mitochondrial Membrane Potential: Used as an in-
dicator for mitochondrial dysfunction.

SR-p53 p53 Protein: Tumor suppressor involved in DNA

repair and cell growth regulation.

A majority of the items listed are either enzymes, proteins or

receptors that serve the body in some function. Toxicity in this
context is the malicious disruption of these specific systems.
Toxicity is a hard problem to define as many chemicals
can be harmful in different ways, and in fact, most medical
drugs are listed as toxins for the reason that they may harm
certain parts of the body despite being employed for good
reasons [9]. Toxicity is thereby not a binary value, nor is it
a continuous spectrum, so alternative systems of describing
the toxicity of molecules are needed. For example, the U.S

National Toxicology Program characterized toxicology into
seven components [10]:

1) Cellular toxicology: Detrimental alteration of cells

2) Genetic toxicology: Alterations of DNA by toxicants

3) Carcinogenesis: Potential to cause cancer

4) Reproductive and developmental toxicology: Effects on
reproductive organs and embryos

5) Renal toxicology: Effects on the kidneys

6) Pulmonary toxicology: Effects on the lungs

7) Immunotoxicology: Effects on the immune system

Many of the biological assays that are present in the Tox21
dataset are represented in one or more of these catagories.
This is not to say that this is a perfect system, as there will be
countless examples of chemicals and toxins that are extremely
dangerous to humans that do not trigger any warnings and
some common helpful endobiotic compounds that will. This
is still one of the better ways of tracing toxicity, and the current
focus for this paper.

II. METHODOLOGY

Predicting toxicity using the Tox21 dataset is a binary classi-
fication problem. While many binary classification tasks can be
effectively addressed using traditional machine-learning mod-
els, the complexity of chemical structures presents additional
challenges. Simpler models, such as Support Vector Machines
(SVMs), may struggle to capture the intricate relationships
between molecular features. Therefore, this project focuses
on comparing SVMs and neural networks to determine which
model type achieves superior performance.

The pipeline of our training process is illustrated in the

flowchart below:
Tox21 Data

@ Feature Generation [ Mordred/Chembert ]

~—
J |

Test
Data Set Data Set

l |

( PCA/LDA ]

SMOTEENN

[ SVM ] [ Neural Net ]

[ Metrics + Analysis }—

( Training

@ Preprocessing

@ Training

@ Performance
Evaluation

Fig. 1. Flowchart of model training.
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The flowchart seen in figure I is split into four main
sections. The basic process is explained below:

1) From the Tox21 dataset, we take the SMILES strings
and featurize them into a vector embedding using either
Mordred or CHEMBERT (see Section on Dataset and
Featurization).

2) With the addition of vectorized molecules, we split
the dataset into training and testing sets. For both sets
we reduce the dimensionality using algorithms such
as Principle Component Analysis (PCA) and Linear
Discriminant Analysis (LDA). For the training set we
use a technique called Synthetic Minority Oversampling
Technique with Edited Nearest Neighbour (SMOTEEN)
to increase visibility of the minority class.

3) After the preprocessing, we train our Support Vector
Machines (SVMs) and neural network models.

4) Once models are trained, the test set is used to evaluate
model performance based on the following key metrics:
AUC, Precision, Recall and F1 Score.

A. Dataset and Featurization

As mentioned in the Introduction, the Tox21 dataset is a
public dataset containing SMILES (Simplified Molecular Input
Line Entry System) strings and 12 biological assay columns
referred to as “tasks”. A value of 1 in any task column indi-
cates that the molecule triggered the assay, implying toxicity
for that specific task.

There are two primary challenges with the Tox21 dataset.
First, the dataset lacks predefined molecular features, as it
only provides SMILES strings without additional structural
or physicochemical descriptors. Second, the dataset exhibits
class imbalance, favouring the value of 0 which indicates that
most molecules do not trigger toxicity-related tasks.

To address the first challenge, we applied featurization,
which is the process of transforming SMILES string into linear
vectors or other favourable computer readable formats. We
experimented with two main processes: Mordred [11] and
CHEMBERT [12].

Mordred works by compiling an array of over 1000 integer
values, each representing various structural features of the
molecule. These features include, but are not limited to, the
number of carbons, hydrogens, acid groups, basic groups,
halogens, aromatic rings, and so forth. A complete list of the
descriptors used can be found here.

CHEMBERT is an open source Bidirectional Encoder
Representation Transformer (BERT) model designed to
take SMILES strings and find the hidden relationships of
the molecular structure. CHEMBERT provided far fewer
features as Mordred (380 opposed to 1084) while also
significantly improving model performance and training
efficiency. Therefore, we decided to use CHEMBERT for all
final models.

B. Preprocessing

To prepare the dataset for model training, we applied two
key techniques: Dimensionality Reduction and Minority Class
Resampling. Both techniques combined constructed a dataset
with a suitable amount of features and enough instances of the
minority class to train a decent model. The following sections
detail these techniques individually.

1) Dimensionality Reduction:

Dimensionality reduction is a technique used to reduce the
amount of features in large datasets while maintaining its most
important information. Given that both Mordred and CHEM-
BERT produce a large quantity of features, not all of which
are completely relevant for the different tasks, dimensionality
reduction became an essential tool when training the models.

We experimented with two methods of dimensionality
reduction algorithms: Principal Component Analysis (PCA)
and Linear Dimensionality Reduction (LDA). These models
were trained separately to explore their differences in results,
and were compared to a baseline where no dimensionality
reduction was applied.

PCA is a technique that identifies the most relevant principal
components in the feature space, reducing dimensionality
by discarding components that contribute the least variance.
However, PCA is less interpretable, as it does not provide
insight into which features are deemed more or less impor-
tant. Given this, we decided to pivot towards using LDA,
which is a supervised method that aims to find the projection
that maximizes the separation (or discriminability) between
different classes. Given its suitability for binary classification
problems, LDA outperformed PCA and ultimately produced
the best results.

2) Resampling:

Resampling is a method that attempts to fix imbalanced
datasets by means of altering the exposure of certain classes
within the dataset. There are two ways to go about this. One
technique is oversampling which creates synthetic samples
to increase the number of the minority class. The other is
undersampling, which reduces the number of samples of the
majority class.

Our models utilize a technique called SMOTEENN, a
combination of the oversampling method SMOTE (Synthetic
Minority Oversampling Technique) and the undersampling
method ENN (Edited Nearest Neighbor). SMOTE generates
synthetic samples by interpolating between nearby positive
minority class instances. ENN removes samples that are
misclassified by their k-nearest neighbors, primarily from the
majority class, to improve class separability and reduce noise.
This combination enhances model performance by balancing
the dataset while filtering out ambiguous mislabeled samples.

Seeing the results in Section III. Results, models using
SMOTEENN produced better results than without them.

C. Training

Following is a discussion of our training process, including
insight into both our Neural Networks and Support Vector
Machines.
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1) Neural Networks:
The neural network models used in this project follows a sim-
ple design implemented using TensorFlow. The architecture
consists of the following layers:

1) Input Layer: Receives the featurized molecular data
derived from either Mordred or CHEMBERT represen-
tations of the molecules.

2) Normalization Layer: Applied to standardize input data,
ensuring all features are scaled to a similar range.

3) First Hidden Layer: Contains 64 neurons and uses the
ReLU (Rectified Linear Unit) activation function to
introduce non-linearity and allow the model to learn
more complex patterns

4) Second Hidden Layer: Contains 32 neurons, continuing
to refine learned features and also uses ReLU activation
function.

5) Output Layer: A single neuron with a sigmoid activation
function to predict the probability of toxicity for each
of the 12 tasks. The sigmoid function is used because
the tasks are binary classification problems - a value of
1 represents toxicity, while O indicates non-toxicity.

To handle class imbalance inherent in the Tox21 dataset, we
use Focal Loss as the loss function. Focal Loss mitigates the
dominance of the majority class by down-weighting easy-to-
classify samples, allowing the model to focus more on harder-
to-classify instances. This makes it particularly effective for
imbalanced datasets. For further details, refer to the Focal Loss
paper [13].

Additionally, class weights are applied to further address the
class imbalance by providing a higher weight to the minority
class which reinforces the importance of making accurate
predictions for the underrepresented class.

The class weights used in the training of both the SVM and
Neural Networks were given by the following equation (Note:
Each task had its own calculated set of class weights):

N
72><ni

D

Ww;

where:

e 1 1s the class, either 1 or 0

e w; is the class weight for class ¢,

o N is the total number of samples in the dataset,
e n; is the number of samples belonging to class .

2) SVMs:

The Support Vector Machines were implemented using
sklearn’s svm module which includes a variety of different
kernel states and parameter options. From testing we found
that the best results were gained by using the base SVM
which employs a Radial Basis Function (RBF) kernel; good
for complex, nonlinear data, which describes our input space
for both Mordred and CHEMBERT.

D. Streamlit Integration

As an additional add-on to our project, a streamlit app was
created to showcase a potential demo for a scenario where
our models would be used by pharmaceutical companies. The
models of all 12 tasks are saved and loaded into the app, where
the user can select the task for a prediction.

The integration of the app is as follows:

1) User inputs the name of a molecule which exists in the

PubChem database, a free chemical database containing
over 100 million known compounds. [14]

2) Through the pubchem database we retrieve its repre-
sentative SMILES string and parse it through CHEM-
BERT’s API to generate features.

3) The features then undergo dimensionality reduction be-
fore being put through the models to generate predic-
tions on toxic effect.

4) The predictions then get outputted for the users to view.

For further information regarding the app, refer to our
Github page.

IIT. RESULTS

In this section, we will discuss and compare our results
using neural networks and SVMs for our binary classification
problem.

For both neural networks and SVMs, different featurization,
dimensionality reduction and resampling techniques were ex-
plored (Refer to Section II. Methodology). Ultimately, through
experimentation, our best results for both model types had
the following combination: CHEMBERT, LDA, and SMO-
TEENN.

The table below presents the averages scores of both model
types across all 12 tasks. Although SVMs show a greater trend
in Recall, the neural networks outperform in F1 score, Preci-
cion, and AUC score. And since the F1 score represents the
harmonic mean between Precision and Recall, it balances both
metrics, making it particularly important in this context where
minimizing false negatives is critical. Given this, the neural
network models are deemed better for toxicity prediction.

TABLE 11
AVERAGE METRICS FOR MODELS OF EACH TASK
Model AUC Precision Recall F1
Neural Networks | 87.01% 48.45% 48.88% | 46.92%
SVMs 83.98% 24.93% 68.92% | 35.24%

Figure 2 (below) showcases the precision-recall graph for
all neural networks models of each task. It can be seen that
each model varies in their results, where many seem to under
perform significantly. The reason is due to the fact that we
were trying to build a general neural network model to be
used for each task. That is, the hyper-parameters were the
same among all tasks. Based off the results, this proved to
be a much more ambitious and challenging approach to the
problem as each task exhibits different properties. Therefore,
any future work should create neural network models unique
to the task to produce optimal results.
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Precision-Recall Curves for All Models
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Fig. 2. Precision-Recall Graph for All Neural Net Models using LDA

The performance of our metrics found in Table I for neural
networks could be explained by the imbalanced of the dataset,
combined with the fact that a general neural network model
was utilized.

IV. CONCLUSION

This study compared the difference between SVMs and
neural networks in building a general machine learning model
that could predict the toxicity of molecules as defined in the
Tox21 dataset. Our best results were gained through using a
combination of CHEMBERT featurization, LDA dimensional-
ity reduction and SMOTEEEN resampling for both the SVMs
and Neural Networks.

Given the metrics we used, we claimed that the neural
networks outperformed the SVMs for this given problem,
but there is still great diffidence pertaining to the areas such
as recall and precision. One reason for this could be our
persistence in applying a general neural network architecture
across all 12 tasks. As shown in Figure 2, this generalized
approach proved ineffective, as each task was so unique.
Future developments would disband this methodology and
focus on building task specific models for each task. Therefore,
until this additional work is completed, the conclusion of
whether SVMs or neural networks are better suited for toxicity
prediction across different tasks cannot be made.

Our models appeared to uphold to the long recognized
trend of chemical Structure-Activity Relationship (SAR) [15]:
which argues that the structure of a chemical can be predicted
by its physical and chemical characteristics. We can make
this claim by addressing the fact that by only using only a
vectorized representation of a molecule’s structure, we were
able to receive an average AUC score of 85% between the
two models. This implies that molecular structure alone carries
enough information to make meaningful toxicity predictions.
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Abstract—Addressing urban traffic congestion is crucial for
environmental sustainability, as inefficient traffic flow leads to
increased fuel consumption and greenhouse gas emissions. This
paper presents TrafficLightRL, a reinforcement learning (RL)-
based traffic light control system designed to minimize vehicle
emissions and improve traffic efficiency. Using SUMO for simula-
tion and the Proximal Policy Optimization (PPO) algorithm from
Stable-Baselines3 for RL training, our system dynamically adapts
to real-time traffic conditions. Results show that the RL agent
reduces CO; emissions by up to 11.6% compared to traditional
fixed-time systems, with performance evaluated across various
traffic densities. This study highlights the potential of RL-driven
solutions to enhance traffic management and reduce environmen-
tal impact. The code and resources for this project are available
at: https://github.com/McMasterAI12024-2025/TrafficLightRL.

I. INTRODUCTION

As one of the McMaster Al Society’s many projects for
the 2024/25 season, this team investigated a reinforcement
learning solution that could address a pressing real-world
issue. Out of a shared concern for environmental sustainability,
as well as inefficiencies in urban mobility, existing traffic light
systems were identified as a major contributor to excessive ve-
hicular emissions. Current traffic light control mechanisms rely
on fixed-timer schedules or sensor-based adjustments, leading
to unnecessary idling and frequent acceleration events—both
of which are known to significantly increase carbon dioxide
(CO;) emissions [1]. In response to this challenge, Traffi-
cLightRL was developed as a reinforcement learning (RL)-
based system aimed at reducing emissions by optimizing
signal timings dynamically. This document discusses the issue
addressed by the project, the design and implementation of
the RL-based system, the quantifiable environmental benefits
observed, and the broader implications for sustainable traffic
management.

A. Motivation

Road transport is responsible for nearly 25% of global
CO; emissions from fuel combustion, with urban congestion
playing a significant role in this footprint [2]. One of the
primary factors contributing to unnecessary emissions is stop-
and-go traffic, where vehicles frequently accelerate from a
standstill. Studies have shown that rapid acceleration events
can increase fuel consumption and emissions by up to 200%
compared to steady-speed travel [1]. Furthermore, in urban
areas, drivers spend an average of 54 hours per year idling in
traffic, further exacerbating emission levels [3].

Despite advancements in adaptive traffic control, conven-
tional systems still struggle to minimize acceleration and

idling simultaneously. This project explores how reinforcement
learning can address this gap by dynamically adjusting traffic
signal timings based on real-time conditions. By prioritizing
reductions in idling duration and acceleration frequency, an
RL-based approach has the potential to significantly lower
CO, emissions in urban environments.

B. Related Works

Traditional traffic light control systems, such as fixed-
timer schedules and sensor-based systems, rely on predefined
rules that lack adaptability to real-time traffic conditions.
While adaptive systems like SCOOT [4] and SCATS [5]
offer improvements by dynamically adjusting signal timings,
they remain limited by rule-based optimizations that require
manual calibration and do not generalize well to varying traffic
patterns.

Reinforcement learning has emerged as a promising alterna-
tive, offering the ability to learn optimal signal timing policies
directly from traffic data. Prior studies have demonstrated that
RL-based systems can reduce vehicle stops, travel times, and
overall emissions [6]. Unlike traditional adaptive systems, RL
approaches continuously refine their control strategies based
on observed traffic dynamics, making them well-suited for
sustainable urban mobility.

C. Problem Definition

The objective of this project is to develop an RL-based
traffic light control system that reduces CO, emissions by min-
imizing vehicle idling and acceleration events. The proposed
system optimizes signal timings based on real-time traffic flow,
adapting dynamically to different conditions without relying
on predefined scheduling rules.

Key evaluation metrics include reductions in total CO,
emissions, idling duration, and the number of full stops per
vehicle. The results aim to highlight the potential of rein-
forcement learning in mitigating urban traffic’s environmental
impact and providing a more sustainable solution to this
pressing issue.

II. METHODOLOGY

This section outlines the design and implementation of the
RL-based traffic light control system. It begins by presenting
the tools and technologies used, followed by a detailed descrip-
tion of the RL agent’s structure and decision-making process.
Next, the simulation environment is discussed alongside real-
world considerations to ensure practical applicability. Finally,
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the evaluation metrics and calculation methods are introduced,
providing a foundation for performance assessment in the
results section.

A. Tools and Technologies

The project leverages two primary technologies: SUMO
(Simulation of Urban MODbility) and Stable-Baselines3.
SUMO provides a realistic traffic simulation environment,
including real-time visualizations and dynamic traffic sce-
narios. Stable-Baselines3, a popular reinforcement learning
library, is used to train the RL agent. The integration between
SUMO and Stable-Baselines3 is facilitated by TraCl, an API
that enables real-time communication between Python and
SUMO. Additionally, OpenAI Gymnasium is used to create
a consistent interface for the RL agent, abstracting SUMO’s
functionality into a format compatible with Stable-Baselines3.
Figure 1 illustrates the process flow and interactions between
these components, which will be elaborated on shortly. Finally,
Matplotlib is leveraged for analysis of various evaluation
metrics.
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Fig. 1. Process flow diagram illustrating the interaction between SUMO,

TraCI API, OpenAl Gymnasium, and Stable-Baselines3.

B. Reinforcement Learning Agent

The RL agent is trained using the Proximal Policy Opti-
mization (PPO) algorithm, a state-of-the-art policy gradient
method implemented in Stable-Baselines3. PPO was chosen
for its stability and efficiency in handling continuous state and
action spaces, making it well-suited for dynamic traffic control
tasks. The agent interacts with the environment by observing
the current state and selecting actions to optimize traffic flow.
The key components of the agent are as follows:

e Observation Space: The agent observes the current
traffic light phase, the time since the last phase change,
and lane-specific metrics such as the number of queued
vehicles and average idling time.

o Action Space: The agent has a discrete action space,
where each action corresponds to a specific traffic light
phase. Each phase determines which lanes are active
(green) and which are inactive (red).

+ Reward Function: The agent receives positive reinforce-
ment for vehicles passing through the intersection and
negative reinforcement for vehicles queued in inactive
lanes. This encourages the agent to minimize waiting
times and congestion.

C. Simulation Environment

The simulation environment is designed to mimic real-world

traffic conditions, which is addressed through various features:

« Random Vehicle Deployments: Introducing randomness

in the form of vehicle routes allows the agent to gen-

eralize effectively to unpredictable traffic patterns. This

enhances real-world applicability, as the RL agent will

never experience two identical episodes during training.

To clarify, an episode represents the time period required

for a specific number of vehicles to pass through the
intersection.

o Variable Traffic Densities: Adjusting the spawn rate of
vehicles enables simulations to model traffic fluctuations,
accounting for real-world factors such as time of day and
weather conditions.

o Standard Traffic Safety Regulations: The environment
enforces standard traffic safety rules, such as requiring the
agent to pass through transition phases (e.g., green —
yellow — red) before switching traffic lights. Addition-
ally, each phase must be held for a minimum duration to
prevent chaotic scenarios and to ensure pedestrians have
sufficient time to cross safely. These features ensure that
the agent adheres to real-world constraints and common
safety practices.

¢ Real-World Networks: To enhance realism, we use the
OSM Web Wizard to export actual geographical location
networks into SUMO. This facilitates traffic simulations
in real-world environments, such as the road network
around McMaster University. Figure 2 shows a side-by-
side comparison of the Google Maps view of McMaster
University and the corresponding SUMO simulation.

In this paper, the term “traditional system” refers to a fixed-

time traffic signal control system implemented in SUMO.
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Fig. 2. Side-by-side comparison of the Google Maps view of McMaster University (left) and the corresponding SUMO simulation (right) generated using
the OSM Web Wizard.

This system operates on a predetermined cycle, with traffic
light phases changing at fixed intervals regardless of real-
time traffic conditions. It serves as a baseline for evaluating
the performance improvements achieved by the RL-based
approach.

D. Evaluation Metrics

To evaluate the performance of the RL agent, three key
metrics are evaluated and calculated as follows leveraging the
TraCI APL:

e Mean CO, Emissions: The average CO, emissions,
measured in mg, produced by a single vehicle during the
simulation. Emissions are calculated at each timestep of
the simulation using SUMO’s TraCI API, which provides
real-time vehicle-specific emissions data. Specifically,
the traci.vehicle.getCO2Emissions method
returns the CO, emissions in milligrams (mg) for each
vehicle, assuming a standard emission rate. The emissions
are aggregated over the duration the vehicle is on the
simulation, and then evaluated as an average of all
vehicles that went through the intersection.

e Mean Idling Times: The average time a single ve-
hicle spent waiting at the intersection. This value is
calculated for each vehicle of the simulation using the
traci.vehicle.getWaitingTime method. These
values are averaged to provide a cohesive representation
rather than focusing on individual vehicles.

« Stopping Probability: The likelihood of a vehicle stop-
ping at the intersection, calculated as the ratio of total ve-
hicles required to stop to total vehicles on the simulation.
This value is calculated utilizing the mean idling times for

each vehicle from earlier, assuming any vehicle that has
an idling time above a specific threshold has stopped. A
threshold is applied to distinguish true stops from minor
slowdowns or coasting. This value is represented as a
probability, rather than a count, as variable factors such
as traffic density and total number of cars will skew this
data.

These metrics are calculated for each episode and com-
pared against traditional traffic light systems to demonstrate
the effectiveness of our RL-based approach. These metrics
provide a comprehensive evaluation of both traffic efficiency
and environmental impact, ensuring the results are applicable
beyond a single intersection.

III. RESULTS

This section presents the performance of the RL-based
traffic light control system compared to a traditional system.
The traditional system, in the context of SUMO, operates on
a fixed cycle of pre-determined green and red light intervals,
independent of real-time traffic conditions. The system is
evaluated based on the three evaluation metrics described
previously: mean emissions per second, mean idling time,
and stopping probability. The x-axis of all figures represents
the vehicle spawn rate, corresponding to the probability of
a vehicle being deployed at each time-step. The spawn rate
is representative of low, medium, and high traffic densities,
illustrated by the blue, green, and red regions respectively.
Each data point is the average of 1000 episodes to ensure
statistical reliability and smooth distributions. The spawn rate
corresponds to the chance a vehicle is to be deployed at each
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time-step of the simulation, and each episode deploys 100
vehicles.

A. Effect of Traffic Density on Mean CO, Emissions

Figure 3 illustrates the effect of traffic density on mean CO,
emissions, measured in (mg).
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Fig. 3. Effect of traffic density on mean CO, emissions. The red line

represents the RL agent, while the blue dashed line represents the traditional
system.

The RL agent significantly reduces CO, emissions com-
pared to the traditional system. In low traffic conditions,
emissions are reduced by 11.6%, 10.2% in medium traffic
conditions and 9.0% in high traffic conditions.

B. Effect of Traffic Density on Mean Idling Times

Figure 4 presents the impact of traffic density on mean
idling times, measured in seconds.
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Fig. 4. Effect of traffic density on mean idling times. The red line represents
the RL agent, while the blue dashed line represents the traditional system.

The RL agent consistently outperforms the traditional sys-
tem by reducing idling times. In low traffic conditions idling

times decrease by 16.4%, while in medium traffic conditions
they decrease by 22.7%. Even in high traffic conditions the
RL agent maintains its advantage with a 26.4% reduction in
idling times.

C. Effect of Traffic Density on Stopping Probability

Figure 5 shows the effect of traffic density on stopping
probability, defined as the proportion of vehicles required to
stop at the intersection.
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Fig. 5. Effect of traffic density on stopping probability. The red line represents
the RL agent, while the blue dashed line represents the traditional system.

The RL agent also reduces stopping probability. In low
traffic conditions, stopping probability decreases by 9.0%,
while in medium and high traffic conditions, it is reduced by
1.8% and 2.3%, respectively.

IV. CONCLUSION

In this project, an RL-based traffic light control system was
developed using SUMO and Stable-Baselines3 to address the
inefficiencies of traditional traffic management systems. Our
findings highlight that the RL agent substantially reduces CO,
emissions across varying traffic densities by minimizing idling
time and decreasing the frequency of complete stops. These
efficiency gains directly contribute to a more environmentally
sustainable urban traffic management system.

A. Discussion of Emissions Reduction

The RL agent’s ability to reduce emissions stems from two
key factors: minimizing idle time, which mitigates prolonged
low-efficiency fuel consumption, and reducing stops, which
limits high-emission acceleration events after red lights.

e Minimization of Idling Time: Idling, while producing
lower emissions per second compared to acceleration,
contributes substantially to total emissions over time
due to its prolonged nature. Although idling times saw
the greatest reduction in high-traffic scenarios, emissions
improvements were less pronounced, highlighting the
diminishing returns of idling reductions compared to stop
reductions
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« Reduction in Stops: Acceleration from a complete stop
is a significant contributor to vehicle emissions. By opti-
mizing traffic flow and reducing the frequency of stops,
the RL agent minimizes the instances of high-emission
acceleration events. The RL agent significantly reduces
stops, particularly in low-traffic conditions, where a 9.0 %
decrease in stopping probability resulted in the greatest
emissions reduction. This suggests that minimizing un-
necessary stops is a key factor in emissions control.

These factors highlight the RL agent’s ability to address
both the high-emission events (acceleration from stops) and
the sustained emissions (idling) that characterize inefficient
traffic systems. By dynamically adapting to real-time traffic
conditions, the RL agent provides a more environmentally
sustainable solution compared to traditional fixed-timer based
systems. The results suggest that further emphasis on decreas-
ing high-emission events, such as acceleration from stops, is
most significant in relation to reduction of C0, emissions.

B. Limitations

Although the RL agent was trained across various traffic
densities, the training distribution was linearly incremented,
causing the agent to encounter medium traffic densities most
frequently. As a result, the agent is more adept at optimizing
performance in these conditions but may be less effective in
handling extreme congestion or sparse traffic. A more bal-
anced training approach—incorporating additional timesteps
for low- and high-traffic scenarios—could improve generaliz-
ability across a wider range of conditions.

While SUMO’s emissions model provides a realistic ap-
proximation of vehicle emissions, it relies on generalized
vehicle dynamics. It does not fully account for real-world
factors such as variations in vehicle types, fuel efficiency, or
environmental influences like weather conditions. However,
because the model prioritizes acceleration and idling behav-
ior—the primary contributors to emissions in urban traffic—it
remains a useful tool for comparative analysis of traffic control
strategies.

Additionally, our study is confined to a controlled simulation
environment, which, while useful for experimentation, does
not capture network-wide congestion effects or interactions
with external infrastructure. This limitation may lead to dis-
crepancies between simulated and real-world performance, as
the learned policy may not generalize effectively to larger
urban networks. Future iterations should incorporate broader
network effects to assess scalability and adaptability in dy-
namic traffic ecosystems.

C. Future Considerations

Several enhancements could improve the RL agent’s real-
world applicability. Future implementations could incorpo-
rate additional considerations such as pedestrian right-of-way,
emergency vehicle prioritization, and adaptive responses to
weather conditions. These factors play a crucial role in urban
traffic systems and would enhance the agent’s ability to operate
effectively in diverse environments.

Another major challenge lies in scaling this approach to
coordinate multiple intersections. As the number of controlled
intersections increases, the complexity of synchronizing sig-
nals grows exponentially, necessitating more advanced agent
communication strategies and higher computational resources.
Multi-agent reinforcement learning (MARL) techniques, such
as decentralized policies with shared learning objectives, could
be explored to tackle this scalability issue.

Additionally, the rise of electric vehicles (EVs) presents
a new avenue for optimization. Since EVs have different
acceleration profiles and do not produce emissions while
idling, an RL-based system tailored for mixed traffic compo-
sitions—including both traditional internal combustion engine
(ICE) vehicles and EVs—could further enhance sustainabil-
ity outcomes. Incorporating real-time EV-specific traffic data
would refine emissions predictions and improve energy effi-
ciency across urban road networks.

While this study demonstrates promising results in optimiz-
ing traffic flow at a single intersection, testing the approach
across a variety of urban environments is essential for broader
applicability. Our current implementation focuses primarily on
Ontario university campuses; expanding to diverse real-world
locations with varied infrastructure and traffic patterns would
provide further validation and refinement of the system.

REFERENCES

[1] M. Barth and K. Boriboonsomsin, “Energy and emissions impacts of
a freeway-based dynamic eco-driving system,” Transportation Research
Part D: Transport and Environment, vol. 14, no. 6, pp. 400410, 2009.

[2] 1. E. Agency, “Co2 emissions from fuel combustion 2022,” https://www.
iea.org/reports/co2-emissions-in-2022, 2022, [Online; accessed 2022].

[3] INRIX, “Global traffic scorecard,” https://inrix.com/scorecard/, 2022,
[Online; accessed 2022].

[4] P. Hunt, D. Robertson, R. Bretherton, and R. Winton, “Scoot—a traffic
responsive method of coordinating signals,” Transport and Road Research
Laboratory, Technical Report, 1981.

[5S] P. Lowrie, “Scats: The sydney coordinated adaptive traffic system -
principles, methodology, algorithms,” Traffic Engineering & Control,
vol. 33, no. 6, pp. 278-281, 1992.

[6] W. Wu, Y. Zhang, R. Jiang, H. Zhang, K. Gao, and D. Zhao, “A
comprehensive survey on traffic signal control methods,” Transportation
Research Part C: Emerging Technologies, vol. 123, p. 102974, 2020.

220



World Model Architectures for Model-Based
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Abstract—World models offer several theoretical benefits, such
as enhanced planning capabilities, and faster, safer, and cheaper
sampling. However, training an effective world model is difficult.
This work explores this challenge by testing 3 neural network
architectures - neural networks with a residual connection,
recurrent neural networks, and Neural Circuit Policies - in
approximating the dynamics of 3 environments: the Lorenz
system, Open Al gym’s Pendulum, and a modified, partially
observed Pendulum.

I. INTRODUCTION
A. Motivation

Reinforcement learning typically divides into Model-Free
and Model-Based Reinforcement Learning. In Model-Free,
agents optimize their behavior to achieve a specific goal,
implicitly learning the environment’s dynamics on the way.
Model-Based Reinforcement Learning explicitly learns a dy-
namics model separate to the agent. Incorporating an ac-
curate dynamics model provides substantial advantages, in-
cluding enhanced planning capabilities, and faster, safer, and
cheaper sampling compared to interactions with real-world or
high-fidelity simulated environments. Real-world interactions
present significant challenges due to slow sampling speeds,
high costs, and safety risks associated with failures. Learned
neural network-based world models offer a promising alter-
native to traditional simulations, as precisely capturing and
replicating real-world dynamics through explicit modeling can
be infeasible or prohibitively complex.

Despite these advantages, model-based approaches remain
relatively underexplored, primarily due to difficulties in gen-
erating accurate and representative simulated data. Effective
world models must simultaneously achieve correctness, sample
efficiency, and computational simplicity—criteria that few ex-
isting architectures satisfy simultaneously. Those that do meet
these conditions often struggle with limited expressiveness or
excessive complexity.

B. Related Works

Model-based reinforcement learning approaches seek to
explicitly capture environmental dynamics through a learned
world model, which then facilitates planning and decision-
making. Early successes in this field utilized ensembles of
neural networks to enhance generalization and reduce model
uncertainty, demonstrating improved sample efficiency com-
pared to model-free counterparts. However, these ensemble
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methods introduce additional complexity and computational
overhead, motivating research into more efficient yet expres-
sive representations of dynamics [1]. Notably, recent model-
based algorithms such as DreamerV3 have demonstrated state-
of-the-art performance in benchmark tasks, yet reproducibility
and transparency remain significant barriers, limiting their
broader adoption in practical scenarios [2].

Advances in continuous-time modeling of system dynamics
have inspired the development of Neural Ordinary Differential
Equations (Neural ODEs) [3]. Neural ODEs parameterize the
derivative of the state as a neural network, integrating forward
through time to capture complex, continuous-time dynami-
cal systems in a differentiable manner. This continuous-time
framework has motivated biologically inspired architectures
such as Liquid Time-Constant (LTC) Networks [4] and Neural
Circuit Policies (NCPs) [5]. These models leverage structured
neural circuits to enhance expressive capability, robustness,
and interpretability. NCPs, in particular, have demonstrated
promising results in challenging real-world reinforcement
learning tasks by effectively capturing intricate temporal re-
lationships.

Collectively, these advances underscore an ongoing trend
toward developing models that balance expressiveness, sample
efficiency, interpretability, and computational simplicity, a
crucial intersection seldom achieved by existing reinforcement
learning architectures.

C. Problem Definition

We consider an agent interacting with an environment,
which can be a physical setting for a biological entity
or a simulated domain for a computational system. This
agent—environment interaction is often modeled as a Markov
decision process (MDP), as illustrated in Figure 1.
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Through this interaction, the agent observes a sequence of
states and actions, denoted by (so, ag, $1, a1, ...), O equiva-
lently by two tuples [(so, $1, .-.), (ag, a1, ...)]. For the purpose
of capturing state transitions, we omit the reward signal from
this formulation. We thus define the transition dynamics of the
environment via a probability function p:

p(st+1|5t,at) = PT{St+1 = S/|St = St,At = at}

for Vs',s € S,a € A.

Given the rapid progress in deep learning, it is increas-
ingly feasible to approximate p with neural networks, making
data-driven models of the environment accurate and robust.
However, despite these promising developments, model-based
reinforcement learning—and particularly the use of neural net-
works as learned “world models”—remains relatively underex-
plored compared to model-free approaches. This work focuses
on bridging that gap, aiming to advance our understanding of
neural network—based world models within RL frameworks.

We investigate the challenge of making useful world models
by experimenting with three distinct neural network archi-
tectures. Two of which have a well-established track record
and extensive literature detailing their advantages for sequence
modeling and temporal dynamics, among other tasks. The
third architecture, Neural Circuit Policies, shows particular
promise in domains that involve physical interactions and
causal reasoning. By comparing these three approaches, we
aim to highlight their strengths and limitations, ultimately
guiding the development of more robust and interpretable
world models for model-based reinforcement learning. We aim
to test these architectures on environments displaying separate
properties. We capture their effectiveness in each environment
as determined by their performance in next-step prediction and
n-step prediction. Additionally, we compare their abilities of
generalization to samples found beyond the training set, as
well their ability to capture dynamics with varying sample
sizes.

II. METHODOLOGY

For the purposes of our paper, we wished to be convinced
of the performance of specific neural network architectures
as world models. We tested three architectures and three
environments to measure the performance of the architectures.
In addition, we varied the amounts of data the architectures
were trained on to provide insight on their capability of sample
efficiency.

A. Architectures

The three neural network-based architectures we used for
this work are Neural Networks with a Residual Connection
or a Residual Block, Recurrent Neural Networks, and Neural
Circuit Policies.

Residual blocks, first popularized by ResNet architectures,
enable neural networks to grow exceptionally deep while
mitigating gradient-related training difficulties. The core idea
is to learn a residual function—that is, the change from an

PO-Pendulum 10k

Fig. 2. Visualization of Data from random trajectories on each environment
with three different amounts of sampling. The top row of plots describe
samples from the Lorenz system, the second row is from Pendulum, and
the third row is from Partially Observed Pendulum.

input to the desired output—rather than the direct mapping
itself. Formally, for an input x;, the updated state is given by.

T = folae) + a4

where fy represents a neural network. Residual connections
bear a conceptual resemblance to Euler’s method in numerical
analysis, in which an incremental update is applied to the
current state to approximate the next value.

Recurrent Neural Networks (RNNs) model sequential data
and time-series phenomena. At each time step t, an RNN cell
receives the current input x; and a hidden state h;_; from the
prior step, generating a new hidden state h; and an output ;.
This hidden state contains information about previous states,
serving as a sort of memory, making RNNs well-suited for
tasks with sequential relationships.

Neural Circuit Policies (NCPs) are a distinct architecture
that blends concepts from the preceding methods, drawing
particular inspiration from the compact nervous system of the
nematode C. elegans, which features only a small number of
neurons yet displays highly adaptive behaviors. This design
integrates biologically motivated principles—sparse, layered
neural circuits and continuous-time neuronal dynamics—with
contemporary training techniques. Unlike standard RNNs,
NCPs rely on two key innovations: (1) neurons governed by
ordinary differential equations (ODEs), and (2) a sparse, struc-
tured connectivity pattern reminiscent of biological networks.
Concretely, NCPs employ a four-tier hierarchical layout: sen-
sory neurons receive external inputs, interneurons and com-
mand neurons jointly process information and make decisions,
and motor neurons produce the final outputs. The specific
wiring among these neuron layers is randomized according
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to a Bernoulli distribution, controlled by hyperparameters that
dictate the feed-forward connection probabilities.

During training, NCPs utilize backpropagation through
time, but the unrolled computational graph must also include
the internal ODE solver. The hidden state of the entire NCP
x(t) € RP>1 evolves according to

dx(t)
Sdt

where I(t) € R™*! is an exogenous input, w, and A are
parameter vectors, f is a neural network parameterized by 6,
and ©® denotes elementwise multiplication. Because gradients
must propagate through each integration step, a neuron’s
current state influences the loss for all previous time points.

= — w4 fo(x(£), 1)) ©x(t) + A® fo(x(t),1(2))

B. Environments

Each of the environments exhibits distinct characteristics
that allow for rigorous evaluation of our architectures, testing
their abilities across varying complexities and dynamics.

Our first environment is the Lorenz System, defined by the
following ordinary differential equations:

dzx

EZU(ZJ—$),
dy

Y o)y,
dz

E—aﬁy—ﬁz.

parameters 0 = 10,p = 28,8 = %. The Lorenz System is
a canonical example of chaotic systems, characterized by de-
terministic yet highly sensitive dynamics dependent on initial
conditions. Its chaotic nature implies that minute variations
in initial states lead to exponentially diverging trajectories,
making it particularly challenging for predictive modeling.
Moreover, the absence of actions in this system isolates the
difficulty of accurately capturing and generalizing complex
temporal dynamics, enabling a focused assessment of our
models’ intrinsic predictive capabilities without the added
complexity of inferring the impacts of external control inputs.
The second environment is the Pendulum from OpenAl’s
Gym, which represents a simplified yet richly informative
physical system possessing Markovian dynamics. The envi-
ronment’s state encapsulates the Cartesian coordinates of the
pendulum’s tip along with its angular velocity, while the
action applies torque directly to the end of the pendulum. The
objective is to stabilize and balance the pendulum upright. This
environment introduces the challenge of explicitly modeling
the interplay between state transitions and control actions,
thus evaluating our models’ proficiency in handling action-
dependent dynamics and control-oriented predictive tasks. The
third environment is the Partially Observed Pendulum, a
variant of the previous Pendulum environment. This envi-
ronment removes the angular velocity component from the
observable state, resulting in a non-Markovian setting. The
lack of full observability demands that models infer latent
dynamics through temporal integration.

C. Experiments

We evaluated the models prediction generalization capabil-
ities on given environments using their autoregressive perfor-
mance, defined in algorithm 1, as the cumulative sum of errors
sustained by the models will illuminate their performance.
Each of the models were trained on some training set to con-
vergence on one-step predictive accuracy. For Lorenz Systems,
we place importance on the model’s ability to approximate
the underlying ODEs which define the system. We track the
trajectories achieved by the models when initial conditions are
changed dramatically, achieved by negating the initial condi-
tions on the Z-axis. We look for deviations in one step and
autoregressive prediction, evaluating specifically on distance
to the original path and similar patterns of progression. For
Pendulum and Partially Observed Pendulum, we initialized
each model at a variety of points found both within and outside
of the training set. By analyzing how well the models follow
the true pendulum motion in an autoregressive manner, we
captured their capacity to maintain low prediction error over
time while staying within the regions they were trained on.
We distinguish a maximum tolerance for residuals at 0.24,
which is the average residual given by the identity (which
predicts the same state it is given). We use this threshold
to suggest when predicted trajectory has strayed significantly
from the sampled trajectory. By performing these autoregres-
sive rollouts numerous times, we get a statistical measure of
the performance of each of those models. We trained each
model on datasets of varying sample sizes to fully capture
how the amount of available data influences learning and
generalization. Smaller datasets reveal a model’s capacity to
handle data-scarce conditions, while larger datasets test the
model’s ability to leverage more abundant information. The
different datasets we created has been illustrated in Figure 2

Algorithm 1 Autoregressive Rollout

Inputs

WM > world model
States > reference trajectory states
Actions > reference trajectory actions
T > rollout length
wl > window_length
Array Error

Array Window < (States[:wl], Actions[:wl])
while ¢ < T do

prediction <— W M (Window)

Error[i] < States[i+1] - prediction

Window < (Window[1:] + prediction, Actions[i:i+wl])
end while

III. RESULTS
A. Lorenz Systems

We primarily care about the models effectiveness at cap-
turing the underlying dynamics of the ODE at play: can
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Architectures Approaches to Lorenz Predictions

Out Of Distribution Trajectories Autoregressive Trajectories

— NCPS Prediction

—— RNN Prediction

—— Res Prediction
Real

il

~10

Fig. 3. Graphs detailing architectures trajectory on Lorenz System: OOD and
Autoregressive Rollouts

the models generalize to out of distribution data, and can
they maintain lobe-switching characteristics when applied auto
regressively. We see on one-step predictions on in distribution
data, all models performed effectively equivalently as shown
in Figure 3. We see a switch however, with only the Residual
Block being capable of generalizing to the out of distribution
data. Further, we see that the residual block maintains lobe-
switching characteristics while the other two models fail to
do so, and falling into stable points instead. While the RNN’s
relatively poor performance may be attributed to limitations
inherent in its structure, there is intrigue with the distinct
performance gaps between NCPS and the Residual Block. We
hypothesize they are training on fundamentally seperate tasks,
with the resnet approximating a vector field with some margin
allowed in the precision of it’s approximation. Conversely, the
NCP architecture appears to attempt a more rigid, closed-
form representation of the underlying dynamical equations,
leaving it more susceptible to cumulative errors and sensitive
to deviations during autoregressive inference.

B. Pendulum

On in-distribution predictions, the residual connection and
RNN models are comparable when trained on 200 samples.
However, the residual connection model performs well with
only 50 samples, while the RNN needs all 200 for the boxplot
to display a similar median. This observation implies that the
residual connection model is more sample efficient. The NCPS
models have worse performance on all training set sizes. Plots
depicting the performance of the 3 architectures trained on
varying numbers of samples is in Figure 4.

On out of distribution tests, performance is worse across the
board. This is expected, as the models have not been trained on
these trajectories. However, this also suggests that the models
are not learning the underlying causal dynamics of the system,
only approximations at points they have been trained on. That
said, of the three, the residual connection and RNN models
perform the best. Performances are depicted in Figure 4.

200EpsAllModels Rollouts —— samecnaey

Tina stop

200 Eps Al Models 00D Rolluts

Fig. 4. These box plots describe at which step individual predicted trajectories
cross the 0.24 threshold. These results are from 150 different random
trajectories.

Fig. 5. Graphs detailing architectures performance on training set, Out-of-
Distribution Lorenz System, and Autoregressive Rollouts

C. Fartially Observed Pendulum

Partially Observed Pendulum excludes the velocity from the
observation, which makes the environment non-Markovian.
Therefore in order for models to learn their dynamics, they
must have a recurrent component. This feature excludes the
recurrent connection model from these tests.

As expected from the restricted information, the perfor-
mances decreases relative to the regular Pendulum environ-
ment. Similar to the Pendulum environment, the NCPs are
outperformed by the RNNs, albeit by a smaller margin.

IV. CONCLUSION

This work explores the gap between the theoretical benefits
of world models, and their immature status in literature.
We test 3 neural network architectures - neural networks
with a residual connection, recurrent neural networks, and

224



Neural Circuit Policies - in approximating the dynamics of 3
environments: the Lorenz system, Open Al gym’s Pendulum,
and a modified, partially observed Pendulum. The residual
connection model performed best on Pendulum and the Lorenz
system, in terms of both sample efficiency, and residuals. This
means regardless of the number of samples the models were
trained on, the residual connections’ predicted trajectories
remained closest to the ground truth, for longest. The perfor-
mance of the RNN is close behind for larger sample sizes. In
all cases, NCPs place third. In Partially Observed Pendulum,
for which the residual connection is omitted, performance
across the board is worse. This is expected, as the models
have less information to work with.

Future work entails integrating these architectures into
model based learning with PPO agents and compare their
agents respective decision-making performance. A larger issue
is forming a hypothesis for why NCPs are under-performing in
our benchmarks, and identifying a set of environments better
suited for NCPS.
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Abstract—Large municipalities in Canada have recently faced
an unprecedented housing crisis. This has been driven by an
increase in the demand for housing and a lack of housing supply.
Stringent zoning requirements have contributed to reducing the
construction of new housing. Each municipality typically has its
own separate zoning code consisting of lengthy documents written
in technical jargon. It is difficult for the public, researchers,
and home builders alike to extract relevant information from
these documents. This opacity restricts the discussion of zoning
policy and aggravates the housing crisis. This project aimed
to use generative and geomatic AI methods to analyze zoning
and construction documents for the Waterloo Region to gain
insights about zoning restrictions. This can be used to quantify
and monitor the effects of zoning on housing supply. A web-
based application with the ability to process, export and query
ad-hoc zoning queries has been developed. Discussions with
regional planners have underscored the importance of this work.
Keywords: Large-Language Models, Zoning, Housing

I. INTRODUCTION

A. Background

Zoning regulations for a municipality typically consist of sev-
eral main zoning districts and respective subdistricts [1]. Max-
imum and minimum requirements for each zoning district are
typically listed. Additional, special clauses are often stipulated
for special overlapping districts, grandfathered lots and other
miscellaneous information. Zoning conditions are reflective
of current conditions of a given plot of land rather than
development priorities. Official plans are a document, which
reflect municipal intensification and urban growth priorities.
They are often less structured than Zoning regulations and
reflect the long-term vision of the municipality. Both zoning
regulations and Official Plans are important for assessing
future housing supply [2].
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Fig. 1.
constrained neigbourhoods (R4) are pictured

Uptown Waterloo Zoning: redevelopments (at arrow) and zoning

B. User Needs Research

We conducted research to assess important factors for zoning
codes and better understand the development process. We
spoke to current urban planners at the Region of Waterloo,
a development lawyer in British Columbia, and other key
stakeholders related to zoning.

We researched current procedures by 3 stakeholders (devel-
opers, researchers and policymakers) which could be improved
by a zoning related application:

1) Developers

They follow 5 steps in development:

1) Find macro purpose: They see where there is a mis-
match between official plan (long term vision), zoning
codes (current conditions) and aggregated demand to
identify potential for housing/development.

2) mid-level opportunity identification: Developers eval-
vate initial plans based on criteria, such as financing,
location and granular demand.

3) Micro-level Analysis: They figure out if local infras-
tructure (transportation, electrical, waste water etc) sup-
ports rezoning. City council attitudes towards previous
house development is also an important consideration.
This includes future plans/approvals data and the pres-
ence of density bonusing incentive programs.

4) Comprise for micro level decisions: Negotiations with
Policy-makers and local groups occur until a compro-
mise is reached, and compliance is met. The developer
typically aims for either highly profitable or specialty
“landmark” projects.
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5) Commencement of Construction Actual construction
of buildings occur.

2) Researchers

They currently manually parse through zoning codes to
extract useful information. This is often a manual and slow
process. They are interested in correlation of these zoning
code data with development patterns. They need to quickly
and systematically collect zoning data for extensive analysis
to be feasible.

3) Policy Makers

They want to increase transparency of open data, investing
in new useful tools to help with that goal. They want to make
better policy decisions (eg. seeing where official plans/zoning
codes are adequate/inadequate and changing zoning). They
have to negotiate with developers and community local groups
to reach a compromise on final building plans.

C. Related Works

It is important to assess the relevant literature regarding
scraping information from zoning regulations:

1) Academic Literature

We were inspired by the Urban Institute’s work on Automat-
ing Zoning Data Collection. Their seminal paper discusses
creating a unified zoning database for manual scraping of data
from the zoning districts within municipalities. LLMs gain
traction for decoding regulatory information across various
domains, such as the financial and health sectors [3].Barthik,
Gupta et al discuss using Large Language Models to decode
zoning statutes in the United States. [4]. This paper also
discusses creating a unified database for zoning regulatory
information, but the data granularity is at the municipality level
(where each municipality is assessed as a whole) unlike the
Urban Institute’s work.

2) Industry Efforts

There are also several startups doing relevant work: Trax.co
is a startup that is working on creating LLM accessible
building codes in Ontario [5]. Arterial.design is a Boston
based startup that “automates decision-making for policy-
driven organizations” [6]. Up.codes is a platform to streamline
code compliance for architects, homebuilders and inspectors
[7]. Finally, Autoprop is a Vancouver-based company that pro-
vides data automation solutions for real estate professionals.
These companies demonstrate the market viability of using
LLMs, web mapping software to create databases that simplify
regulatory information [8].

3) Literature Conclusions

Based on the literature, relevant companies and interviews
conducted, our design project aims to be the first project to
use multimodal LLMs to automatically retrieve zoning data by
zoning districts and visualize and analysis this data through a
geomatic lens.

II. METHODOLOGY

A. Problem Definition
The team proposes using NLP methodologies such as Retrieval

Augmented Generation to 1) simplify the verbosity of various
zoning documents to illustrate what can and cannot be built

in a certain area (ie. by chatbot). 2) Extract exact details from
zoning documents about setback and density. 3) Use classical
ML techniques to correlate extracted zoning information with
housing development in a given municipality. 5) Create a
unified framework to compare the zoning of neighborhoods
across the 3 Urban municipalities in the Region of Waterloo.

The ultimate goal of the application would be for the general
public to have increased awareness of zoning laws, while
providing a useful resource for researchers and policy makers.

B. Dataset Design
1) Phase 1

We then collected zoning regulations for the 3 Urban munic-
ipalities of Waterloo Region that are available as PDFs on the
municipalities’ respective ‘“Zoning and Building” pages.For
example, Kitchener’s zoning data is found on their Open Data
site [9]. This formed the backbone of our data repository. We
then exported this data into PDFs which would be later be fed
to the LLM [10].

2) Phase 2 and beyond

The geographical areas of zoning codes in the region were
owned by a private organization. Hence, we had to manually
trace sample urban districts using Google Maps. We converted
this data to GeoJSON and would later combine it with the
zoning data for each respective district. We would corroborate
addition housing information sourced from Zillow and Water-
loo Region Connected . Geographical datasets that Correspond
to transportation, energy utility and Water infrastructure were
also exported from municipal open data sources.

C. Technology used

We strived to identify high-accuracy, cost—efficient tools and
technologies for the project.

LLM + RAG Based projects typically have raw textual
data that is sent into a vector database, which first turns
textual meanings into vectorial representations. and stores the
relevant information. Afterwards this data is sent as context to
a foundational Large Language Model, that aims to find the
most similar internal source data to a prompt [11].

Front End Frameworks are required for the GUI of the
application. The front end would either use custom made
or ready-made JavaScript/HTML/CSS rendering templates (ie.
through Streamlit or Azure).

Back End Frameworks are used logic of the application.
Most of the backend of this project would be done in the
Python language in conjunction with various LLM APIs. We
initial hoped to evaluate the use of several models such as
GPT, Claude, Gemini and LLAMA for the LLM similar to
other projects.We are evaluating the use of Langchain, and
the “Agentic” RAG options for the various LLMs. We are
also looking at cloud computing/deployment services such
as Heroku, Amazon Web Services or Azure to deploy to
application when completed.
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III. RESULTS
A. Phasel - Base Tested LLM

1) Iterationl

The first iteration used the Azure CosmosDB Vector
Database, GPT 3.5 Turbo as the LLM and had an Azure studio
hosted webapp for the Interface (Backend + GUI).

We noticed that while this version was easy to set up
and worked decently for small question, The performance
was degraded for more complicated queries (circular and non
answers were common). Additionally model hyper-parameters
were not able to be extracted. Hence a second iteration was
explored.

Fig. 2. Chatbot with Testing Questions

2) Iteration2

A second iteration of the product was also made after
further research. This version uses the FAISS Database, GPT
4 Turbo LLM, Streamlit for the front end and Langchain for
orchestration. This version is currently locally hosted. Testing
of the second iteration also included the same sample questions
had the first one but also included some real hyperparameters:
model, chunk size, chunk overlap and temperature. The model
is adjustable using GPT 3.5 Turbo GPT 4 Turbo currently
(other models undergoing testing).

Chunk size refers to the largest character size of a text
chunk used for embedding. Chunk overlap is the number of
characters that are overlapped between two chunks that are
next to each other for vectorization. Temperature refers to the
amount of randomness of chatbot results. [12].

TABLE I
HYPERPARAMETER OPTIONS AND LIMITS.
Hyperparameter | Tuning limits

Chunk size [100,2000]
Chunk Overlap [10,200]
Temperature [0.05,0.3]
Zoning Codes [R1,R4,RMU]

A set of 13 Questions were prompted to the LLM which
were sourced from the Barthik and Gupta paper, the National
Zoning Atlas paper, and advice from current urban planner (s)
[4] [10] .

1) What is the minimum building height?

2) What is the maximum building height?

3) What is the minimum street line setback?

4) What is the maximum street line setback?

5) What is the minimum density?

6) What is the maximum density?

7) What are minimum frontage requirements for single
family residential development?

8) What are maximum frontage requirements for single
family residential development?

9) Are apartments above commercial (mixed use) allowed?

10) Is multi-family housing allowed, either by right or
special permit (including through overlays or cluster
zoning)?

11) Are attached single family houses (townhouses, 3+
units) listed as an allowed use (by right or special
permit)?

12) Are accessory dwelling Units (ADUs) or in-law apart-
ments allowed (by right or special permit)?

13) Is cluster development, planned unit development,
Planned Residential Development (PRD) open space
residential design, or another type of flexible zoning
allowed by right?

We customized questions by attaching the word “’in” and one
of 3 zoning codes, Residentiall, Residential4, and Residential
Mixed-use zone to the end of questions. Additionally, we ran
each configuration at least 5 times due to the stochasticity of
LLMs (which could output different result each time) to ensure
reliability.

TABLE II
BEST PARAMETERS AND VALUES FOR DIFFERENT ZONES.
Zone (Chunk Size, Chunk Over- | Best
lap, Model, Temperature) Accu-

racy

R1 (800, 100, gpt-3.5-turbo, 0.26) | 1.0

R4 - | (1000, 100, gpt-3.5-turbo, | 0.67

SINGLE 0.12)

DETACHED

R4 - SEMI- | (800, 100, gpt-4-turbo, 0.35) 0.83

DETACHED

and

DUPLEX

R4 - | (600, 100, gpt-4-turbo, 0.012) | 0.83

FREEHOLD

SEMI

DETACHED

RMU-20 (800, 100, gpt-4-turbo, 0.10) 0.83

RMU-30 (1000, 100, gpt-4-turbo, 0.05) | 0.83

RMU-40 (600, 100, gpt-4-turbo, 0.49) 1.0
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Best Value for Different Residential Zones

R AED

R4~ semoETACHED
s DUPLEX

RA- SINGLE DETACHED

Fig. 3. Accuracy over different zones

Results indicate that the model is able to perform accurately
across different zoning and sub-zoning districts. The higher
performance is shown with GPT-4-turbo model using lower
value of temperature. The model is able to do considerably
well even in zones that have multiple subzones (ie. RMU).
This indicates a high degree of ability for the model to a)
read and comprehend tables with requirements for multiple
subzones as well as b)retrieve the relevant content from its
database to be able to answer the user queries. It can be
seen that a moderate chunk size between 600-800 tokens is
sufficient to allow for retrieval of relevant content. "R-4 -
Single Detached” was the only zoning code with significant
retrieval issues.

Future Phases of the project use the average of the best
recall hyperparameters for each zoning code identified in
Phase 1.

® Zoning Chatbot

How can | help you?

LE)

Hello! How can | assist you today?

What is the minimum building height in R1 - Residential One Zone?

The minimum building height in R1 - Residential One Zone is 10 meters.

What is a flankage yard as it relates to zoning?

fmy Aflankage yard is a yard that extends across the full width of a lot between the facade (exterior
wall) of the principal building or buildings and the flankage lot line. It jointly comprises part of the
front yard and rear yard where such yards coincide with the flankage yard as described in the

zoning regulations.

Fig. 4. Second Iteration of Chatbot with testing questions

B. Phase2 - Query and Download

For this phase, Given a suitable query (with municipality,
zoning code, sub-zoning code and chosen metrics), the system
would output the requested information in a structured format
(i.e. in JSON or CSV format) along with an Al-generated
summary of zone. The data would come mostly from the
zoning code and official plan(undergoing tests).

An example of such a query would be:

Municipality: [Waterloo];

Zoning codes: [Residential3 , Residential5 ];

Zub—-zoning codes: [All];
Metrics: [maximum height, minimum height,
maximum density , minimum density ]

We developed random test questions (with known answers) to
test the system. Final Output types after prompt engineering
are shown below:

in building per lot" }

Fig. 5. Sample JSON output of Query and Download Feature

C. Phase3 - Select and View

Geographic Information pertaining to zoning code districts
and Future growth areas was aquired from municipalities in a
GeojSON format. We merged our textual zoning data output
for each municipality (from the Query and Download Feature)
and our geographic data to create a single layer. We would
display this information as an interactive layer in the zoning
LLM app. We made a system such that queries from our chat
bot pertaining to geographical information would be converted
to SQL and all districts meeting the query criteria would be
selected. A sample query would be “Select all areas with a
maximum height of 10” meters”. We cross referenced results
with the actual zoning map to ensure accuracy of this feature.
We used the MapBOX mapping API for this and future phases
with mapping.
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Map Overlay

Fig. 6. Map of Zoning Codes in Central Waterloo

D. Phase4 - Historical Data

In additional to the zoning information recall identified in pre-
vious phases, We would also add housing supply and demand
information from various sources to our mapping/chatbot
database. We connect to the APIS of real estate websites
such as Zillow for information about units on the market, and
Local development forums such as UrbanToronto, or Waterloo
RegionConnected which keep detailed databases of recent
construction products with information about the size, builders,
and number of units [13].

This information could geographically either be in a “point
format” (real estate, development information), where each
point would represent a unit/development respectively; or in a
“area” format for broader neighborhood level insights.

Boolean search operations (NOT, AND, OR) could be
used to identify interaction zones between various zoning and
housing data. By comparing the various intersection zones
(restrictive zones/places with lots of development areas) we
can could quantify correlations between zoning regulation
and housing development. However, current testing has been
restricted to qualitative analysis for the time being.

Fig. 7. Map of recent multi-story developments and transport infrastructure
in Waterloo

E. Phase5 - Development Compliance and Visualization

Once a plot is selected for development, developers need to
construct an example of massing for a proposal. This is a
time consuming process that requires constructing detailed
3D models of a proposed structures. These models need to
be remade regularly as the development concept changes.
Thus, we have developed a system that is able to generate
renders and 3D models of massing structure. The user would
input the height (in storeys) of the building, the shape (L
shape, rectangular etc.), the location (suburban or urban) and
a model of the structure is generated using the MapBOX
mapping library. Given the maximum building sizes/densities
in a zoning code, the application says if the building does
not meet the zoning code and it suggests similar but feasible
structures.

Current Location

a

Building Specifications

Fig. 8. Sample compliance feature notification

The OpenAl (DALL-E) API is used to create a render of the

requested building. Users have the option to download their

generated media.
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would finally like to thank Y-Combinator startup Hamming.ai
for their advice on LLM benchmarking techniques.

REFERENCES

[11 K. P. Green and J. Filipowicz, “Barriers to housing
supply in ontario and the greater toronto area,” 2023.
[Online]. Available: https://www.fraserinstitute.org/sites/default/files/
barriers-to-housing- supply-in-ontario-and-the- greater-toronto- area.pdf

[2] X. Gabaix, “Zipf’s law for cities: An explanation,” National Bureau of
Economic Research, Working Paper 8835, 2002. [Online]. Available:
https://www.nber.org/system/files/working_papers/w8835/w8835.pdf

[3] Z. Cao and Z. Feinstein, “Large language model in financial regulatory
interpretation,” Jul 2024. [Online]. Available: http://arxiv.org/abs/2405.
06808

[4] A. Bartik, A. Gupta, and D. Milo, “The costs of housing regulation:
Evidence from generative regulatory measurement,” SSRN Electronic
Journal, 2023.

[5] Tra.co. [Online]. Available: https://www.trax.co/

[6] R. Kothari, “Automated land development.”” [Online]. Available:
https://www.arterial.design/

[71 Upcodes. [Online]. Available: https://up.codes/

[8] AutoProp. [Online]. Available: https://autoprop.ca/

[9] C. of Kitchener, “Open data,” accessed: 2025-03-17. [Online].
Available: https://www.kitchener.ca/en/council-and-city-administration/
open-data.aspx

[10] J. Axelrod, L. Lo, and S. C. Bronin, “Automating zoning data collection,”
Urban Institute and Cornell University, Tech. Rep., feb 2023, accessed:
2025-03-17. [Online]. Available: https://www.urban.org/sites/default/

) o files/2023-02/Automating%20Zoning%20Data%20Collection.pdf

Fig. 9. Sample rendered building [11] K. Pandya and M. Holia, “Automating customer service using

langchain: Building custom open-source gpt chatbot for organizations,”

2023. [Online]. Available: https://arxiv.org/abs/2310.05421

IV. CONCLUSION [12] D. Lin, “Revolutionizing retrieval-augmented generation with enhanced
V. K F pdf structure recognition,” 2024. [Online]. Available: https://arxiv.org/
- REY FINDINGS abs/2401.12599

[13] zillow. [Online]. Available: https://www.zillow.com/

The housing crisis is a prominent issue in Canada [14]. Zonin
g P [14] g [14] K. P. Green and J. Filipowicz, “The impact of land-

codes are one of the factors which limit housing supply. Gen- use regulation on housing supply in canada’  2024.
erative models have been shown to be effective at extracting [Online]. Available: https://www.fraserinstitute.org/sites/default/files/
relevant information from regulatory documents. This project impact-of-land-use-regulation-on-housing-supply-in-canada.pdf

has applied these models to extract related information from
zoning code documents to quantify effects of housing regula-
tion. Extensive benchmarking undertaken during this project
has demonstrated that these models indeed show promise in
extracting textual information and generating useful insights
in geographical, image and textual domains. Researchers and
relevant individuals who were contacted during the research
process have also shown interest in this technology. Thus,
the team will continue to develop this model for enterprise
purposes in the future. Specifically features to further analyze
historical housing and infrastructure data will be pursued.

VI. LIMITATIONS

Hyperparameter Testing only used GPT-3.5 and GPT-4 as
LLMs due to budget constraints. Several features were not able
to be implemented due to ongoing difficulties in obtaining data
(eg. real time rent prices). Although various chunking sizes
were used in the RAG process, the chunking process used
simple text splitting to extract text from tables. In the future,
usage of OCR and object detection techniques can lead to
higher accuracy and precision metrics from the model.

VII. ACKNOWLEDGMENTS

We would like to thank WAT.ai for their helpful resources. We
would also like to acknowledge Sustainable Waterloo Innova-
tion Lab for their efforts in bringing this app to reality. We

231



	A Deep Reinforcement Learning and Predictive Architecture for Stock Portfolio Management
	A Mechanistic Interpretability Approach to LLM Jailbreak Defense
	A Versatile Platform in Unity for Prototyping Evolutionary-Behaviour and AI Research
	Accessible EEG Classification with Attention-Based Neural Networks
	AI Squared Tournament: A Flexible Reinforcement Learning Framework for 1v1 Platform Fighting Agents
	AI consciousness and the evolution of labour ethics: Reframing historical materialism 
	American Sign Language Recognition for Underrepresented Populations
	An Application of Reinforcement Learning in Rocket League
	Art Suggester AI: The Art Recommendation Tool
	Automated Road Damage Detection and Interactive Mapping
	BOLLD: Body and Oral Language Learning Decoder
	Brain-Agnostic 3DCNNs Learn Naturalistic Emotion from 7t fMRI
	Can AI Design Cancer Vaccines? Evaluating Neural Networks for Epitope Prediction
	CNN-based Diagnosis from Medical Imaging: Leveraging Transfer Learning for Enhanced Accuracy
	Copyright Detection in Large Language Models: An Ethical Approach to Generative AI Development
	DentAI Vision: AI-Powered Dental X-Ray Analysis for Enhancing Trust and Patient Education
	Do We Need Transformers to Play FPS Video Games?
	educ-AI-tion
	Energy Savings in Buildings Using Predictive Analysis
	Enhancing Self-Driving Segmentation in Adverse Weather Conditions: A Dual Uncertainty-Aware Training Approach to SAM Optimization
	Evaluating Decision-Making Generalization in RAG Agent Architectures
	Exploring the Ethical Implications of Using AI-Based Software for MRI Diagnosis in Clinical Settings
	Financial Narrative Genome
	Flow to Learn: Flow Matching on Neural Network Parameters
	Generative Music AI's $350 Million Problem: Compensating Creators for the Use of Copyrighted Materials in Training Sets
	Graph-Informed Transformers for Neural Network Inference Latency Prediction
	Lovelytics: Multi-Agent Approach to LLM Task Automation for Business Users
	Mechanistic Interpretability Through Multi-Feature Steering of Neural Networks
	ProphetJet: Predictive Maintenance Modelling Using LSTM, Random Forest, and XGBoosting to Forecast RUL Metrics of NASA Turbofan Jet Engines
	Real Time Object Detection for Competitive Robotics
	RecognEyes – Smart Glasses for Prosopagnosia
	RespiraCheck: Using Audio Analysis as a COVID-19 Testing Tool
	Sedentary Posture Recognition and Correction Using a Convolutional Neural Network (CNN) and the You Only Look Once Version 8 (YOLOv8) Pose Estimation Model
	Symbolic Music Genre Transfer
	Toxicity Prediction Based on Molecular Structure Using Machine Learning
	TrafficLightRL
	World Model Architectures for Model-Based Reinforcement Learning
	ZoningLLM – A Novel Multimodal Application for Zoning Analysis

